PuSH - Publication Server of Helmholtz Zentrum München

Rauchenwald, T.* ; Benedikt-Kühnast, P. ; Eder, S.* ; Grabner, G.F.* ; Forstreiter, S.* ; Lang, M.* ; Sango, R.* ; Eisenberg, T.* ; Rattei, T.* ; Haschemi, A.* ; Wolinski, H.* ; Schweiger, M.*

Clearing the path for whole-mount labeling and quantification of neuron- and vessel-density in adipose tissue.

J. Cell Sci. 138:JCS263438 (2025)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold (Paid Option)
Creative Commons Lizenzvertrag
White adipose tissue (WAT) comprises a plethora of cell types beyond adipocytes forming a regulatory network that ensures systemic energy homeostasis. Intertissue communication is facilitated by metabolites and signaling molecules that are spread by vasculature and nerves. Previous works indicated that WAT responds to environmental cues by adapting the abundance of these "communication routes", however, high intra-tissue heterogeneity questions the informative value of bulk or single cell analyses and underscores the necessity of whole-mount imaging. The applicability of whole-mount WAT-imaging is currently limited by two factors: I) Methanol-based tissue clearing protocols restrict the usable antibody portfolio to methanol resistant antibodies and II) The vast amounts of data resulting from 3D imaging of whole-tissue samples require high computational expertise and advanced equipment. Here, we present a protocol for whole-mount WAT clearing, overcoming the constraints of antibody-methanol sensitivity. Additionally, we introduce TiNeQuant (Tissue Network Quantifier) a Fiji tool for automated 3D quantification of neuron- or vascular network density, freely available at https://github.com/SchweigerLab/TiNeQuant. Given TiNeQuants versatility beyond WAT, it simplifies future efforts studying neuronal or vascular alterations in numerous pathologies.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Adipose Tissue Clearing ; Image Processing ; Network Density ; Quantitative Microscopy ; Spatial Analysis ; Whole-mount Imaging
ISSN (print) / ISBN 0021-9533
e-ISSN 1477-9137
Quellenangaben Volume: 138, Issue: 3, Pages: , Article Number: JCS263438 Supplement: ,
Publisher Company of Biologists
Publishing Place Cambridge
Non-patent literature Publications
Reviewing status Peer reviewed