Bergamasco, M.I.* ; Yang, Y.* ; Garnham, A.L.* ; Sheikh, B. ; Smyth, G.K.* ; Voss, A.K.* ; Thomas, T.*
KAT6B overexpression rescues embryonic lethality in homozygous null KAT6A mice restoring vitality and normal lifespan.
Nat. Commun. 16:1958 (2025)
Closely related genes typically display common essential functions but also functional diversification, ensuring retention of both genes throughout evolution. The histone lysine acetyltransferases KAT6A (MOZ) and KAT6B (QKF/MORF), sharing identical protein domain structure, are mutually exclusive catalytic subunits of a multiprotein complex. Mutations in either KAT6A or KAT6B result in congenital intellectual disability disorders in human patients. In mice, loss of function of either gene results in distinct, severe phenotypic consequences. Here we show that, surprisingly, 4-fold overexpression of Kat6b rescues all previously described developmental defects in Kat6a mutant mice, including rescuing the absence of hematopoietic stem cells. Kat6b restores acetylation at histone H3 lysines 9 and 23 and reverses critical gene expression anomalies in Kat6a mutant mice. Our data suggest that the target gene specificity of KAT6A can be substituted by the related paralogue KAT6B, despite differences in amino acid sequence, if KAT6B is expressed at sufficiently high levels.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Histone Acetyltransferase Kat6b; Leukemia Zinc-finger; Hematopoietic Stem; Gene-expression; Moz; Family; Mutations; Protein; Cells; Acetylation
Keywords plus
Language
english
Publication Year
2025
Prepublished in Year
0
HGF-reported in Year
2025
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 16,
Issue: 1,
Pages: ,
Article Number: 1958
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Institute(s)
Helmholtz Institute for Metabolism, Obesity and Vascular Research (HI-MAG)
POF-Topic(s)
30201 - Metabolic Health
Research field(s)
Helmholtz Diabetes Center
PSP Element(s)
G-555000-001
Grants
Australian Government Postgraduate Award
Victorian Government through an Operational Infrastructure Support Grant
Australian National Health and Medical Research Council
Copyright
Erfassungsdatum
2025-04-28