PuSH - Publication Server of Helmholtz Zentrum München

Dorschky, E.* ; Nitschké, M.J.E.* ; Mayer, M.* ; Weygers, I.* ; Gassner, H.* ; Seel, T.* ; Eskofier, B.M. ; Koelewijn, A.D.*

Comparing sparse inertial sensor setups for sagittal-plane walking and running reconstructions.

Front. Bioeng. Biotechnol. 13:1507162 (2025)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Estimating spatiotemporal, kinematic, and kinetic movement variables with little obtrusion to the user is critical for clinical and sports applications. One possible approach is using a sparse inertial sensor setup, where sensors are not placed on all relevant body segments. Here, we investigated if movement variables can be estimated similarly accurate from sparse sensor setups as from a full lower-body sensor setup. We estimated the variables by solving optimal control problems with sagittal plane lower-body musculoskeletal models, in which we minimized an objective that combined tracking of accelerometer and gyroscope data with minimizing muscular effort. We created simulations for 10 participants at three walking and three running speeds, using seven sensor setups with between two and seven sensors located at the feet, shank, thighs, and/or pelvis. We found that differences between variables estimated from inertial sensors and those from optical motion capture were small for all sensor setups. Including all sensors did not necessarily lead to the smallest root mean square deviations (RMSDs) and highest coefficients of determination ( R 2 ). Setups without a pelvis sensor led to too much forward trunk lean and inaccurate spatiotemporal variables. Mean RMSDs were highest for the setup with two foot-worn inertial sensors (largest error in knee angle during running: 18 deg vs. 11 deg for the full lower-body setup), and ranged between 4.8-18 deg for the joint angles, between 1.0-5.4 BW BH% for the joint moments, and between 0.03 BW-0.49 BW for the ground reaction forces. We found strong or moderate relationships ( R 2 > 0.5 ) on average for all kinematic and kinetic variables, except for the hip and knee moment for five out of the seven setups. The large range of the coefficient of determination for most kinetic variables indicated individual differences in simulation quality. Therefore, we conclude that we can perform a comprehensive sagittal-plane motion analysis with sparse sensor setups as accurately as with a full sensor setup with sensors on the feet and on either the pelvis or the thighs. Such a sparse sensor setup enables comprehensive movement analysis outside the laboratory, by increasing usability of inertial sensors.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Gait Analysis ; Gait Simulations ; Inertial Measurement Units ; Optimal Control ; Trajectory Optimization; Contact
ISSN (print) / ISBN 2296-4185
e-ISSN 2296-4185
Quellenangaben Volume: 13, Issue: , Pages: , Article Number: 1507162 Supplement: ,
Publisher Frontiers
Publishing Place Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Non-patent literature Publications
Reviewing status Peer reviewed
Institute(s) Institute of AI for Health (AIH)
Grants Fraunhofer Internal Programs
European Federation of Pharmaceutical Industries and Associations
European Union
Innovative Medicines Initiative 2 Joint Undertaking
Adidas AG
German Research Foundation (DFG, Deutsche Forschungsgemeinschaft)