Most advances in early human postimplantation development depend on animal studies and stem cell-based embryo models. Here, we present self-organized three-dimensional human gastruloids (hGs) derived from embryonic stem cells. The transcriptome profile of day 3 hGs aligned with Carnegie stage 7 human gastrula, with cell types and differentiation trajectories consistent with human gastrulation. Notably, we observed the emergence of nascent primordial germ cell-like cells (PGCLCs), but without exogenous bone morphogenetic protein (BMP) signaling, which is essential for the PGCLC fate. A mutation in the ISL1 gene affects amnion-like cells and leads to a loss of PGCLCs; the addition of exogenous BMP2 rescues the PGCLC fate, indicating that the amnion may provide endogenous BMP signaling. Our model of early human embryogenesis will enable further exploration of the germ line and other early human lineages.
GrantsDeutsche Forschungsgemeinschaft Helmholtz Association German National Academy of Sciences Leopoldina Human Development Biology Initiative Wellcome Senior Investigator Award in Science