The combination of temporal and spatial dose fractionation in microbeam radiation therapy.
    
    
        
    
    
        
        Biomedicines 13:678 (2025)
    
    
    
      
      
	
	    Background: Microbeam radiation therapy (MRT) is an advanced preclinical approach in radiotherapy that utilizes spatially fractionated dose distributions by collimating x-rays into micrometer-wide, planar beams. While the benefits of temporal fractionation are well established and widely incorporated into conventional radiotherapy protocols, the interplay between MRT and temporal dose fractionation remains largely unexplored. In this study, we investigate the effects of combining temporal and spatial dose fractionation by assessing clonogenic cell survival following temporally fractionated MRT with varying irradiation angles, compared to conventional broad-beam (BB) irradiation. Methods: A lung tumor cell line (A549) and a normal lung cell line (MRC-5) were irradiated with a total number of four fractions with a 24 h interval between each fraction. We compared a temporally fractionated BB regime to two temporally fractionated MRT schemes with either overlapping MRT fields or MRT fields with a 45° rotation per fraction. Subsequently, the clonogenic cell survival assay was used by analyzing the corresponding survival fractions (SFs). Results: The clonogenic survival of A549 tumor cells differed significantly between microbeam radiation therapy with rotation (MRT + R) and overlapping MRT. However, neither MRT + R nor overlapping MRT showed statistically significant differences compared to the broad-beam (BB) irradiation for A549. In contrast, the normal tissue cell line MRC-5 exhibited significantly higher clonogenic survival following both MRT + R and overlapping MRT compared to BB. Conclusions: This study demonstrates that combining temporal and spatial fractionation enhances normal tissue cell survival while maintaining equivalent tumor cell kill, potentially increasing the therapeutic index. Our findings support the feasibility of delivering temporally fractionated doses using different MRT modalities and provide clear evidence of the therapeutic benefits of temporally fractionated MRT.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Cfa ; Lung Cancer ; Microbeam Radiation Therapy ; Spatially Fractionated Radiation Therapy ; Temporal Fractionation; Monte-carlo
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2025
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2025
    
 
    
    
        ISSN (print) / ISBN
        2227-9059
    
 
    
        e-ISSN
        2227-9059
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 13,  
	    Issue: 3,  
	    Pages: ,  
	    Article Number: 678 
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            MDPI
        
 
        
            Publishing Place
            Basel, Switzerland
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Research field(s)
        Radiation Sciences
    
 
    
        PSP Element(s)
        G-501300-001
    
 
    
        Grants
        
Emmy Noether Programme (DFG)
Deutsche Forschungsgemeinschaft (DFG)
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2025-05-09