PuSH - Publication Server of Helmholtz Zentrum München

Ramírez-Amador, F.* ; Paul, S.* ; Kumar, A.* ; Lorent, C.* ; Keller, S.* ; Bohn, S. ; Nguyen, T.* ; Lometto, S.* ; Vlegels, D.* ; Kahnt, J.* ; Deobald, D.* ; Abendroth, F.* ; Vázquez, O.* ; Hochberg, G.K.A.* ; Scheller, S.* ; Stripp, S.T.* ; Schuller, J.M.*

Structure of the ATP-driven methyl-coenzyme M reductase activation complex.

Nature, DOI: 10.1038/s41586-025-08890-7 (2025)
Publ. Version/Full Text DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Methyl-coenzyme M reductase (MCR) is the enzyme responsible for nearly all biologically generated methane1. Its active site comprises coenzyme F430, a porphyrin-based cofactor with a central nickel ion that is active exclusively in the Ni(I) state2,3. How methanogenic archaea perform the reductive activation of F430 represents a major gap in our understanding of one of the most ancient bioenergetic systems in nature. Here we purified and characterized the MCR activation complex from Methanococcus maripaludis. McrC, a small subunit encoded in the mcr operon, co-purifies with the methanogenic marker proteins Mmp7, Mmp17, Mmp3 and the A2 component. We demonstrated that this complex can activate MCR in vitro in a strictly ATP-dependent manner, enabling the formation of methane. In addition, we determined the cryo-electron microscopy structure of the MCR activation complex exhibiting different functional states with local resolutions reaching 1.8-2.1 Å. Our data revealed three complex iron-sulfur clusters that formed an electron transfer pathway towards F430. Topology and electron paramagnetic resonance spectroscopy analyses indicate that these clusters are similar to the [8Fe-9S-C] cluster, a maturation intermediate of the catalytic cofactor in nitrogenase. Altogether, our findings offer insights into the activation mechanism of MCR and prospects on the early evolution of nitrogenase.
Impact Factor
Scopus SNIP
Altmetric
48.500
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Thermoautotrophicum-delta-h; M Methylreductase System; Crystal-structure; Nickel Enzyme; Key Enzyme; Oxidation; Saturation; F430; Biosynthesis; Mechanism
Language english
Publication Year 2025
HGF-reported in Year 2025
ISSN (print) / ISBN 0028-0836
e-ISSN 1476-4687
Journal Nature
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
Institute(s) Cryo-EM facility (CEMP)
POF-Topic(s) 30201 - Metabolic Health
Research field(s) Pioneer Campus
PSP Element(s) G-510098-001
Grants Deutsche Forschungsgemeinschaft (German Research Foundation) through the cluster of excellence 'UniSysCat' under Excellence Strategy
Novo Nordisk Foundation
International Max Planck Research School Principles of Microbial Life
European Union
Deutsche Forschungsgemeinschaft
Protein Biochemistry and Spectroscopy Facility of the Philipps-University Marburg
Scopus ID 105002644281
PubMed ID 40240609
Erfassungsdatum 2025-05-10