PuSH - Publication Server of Helmholtz Zentrum München

Hmgb2 improves astrocyte to neuron conversion by increasing the chromatin accessibility of genes associated with neuronal maturation in a proneuronal factor-dependent manner.

Genome Biol. 26:100 (2025)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: Direct conversion of reactive glial cells to neurons is a promising avenue for neuronal replacement therapies after brain injury or neurodegeneration. The overexpression of neurogenic fate determinants in glial cells results in conversion to neurons. For repair purposes, the conversion should ideally be induced in the pathology-induced neuroinflammatory environment. However, very little is known regarding the influence of the injury-induced neuroinflammatory environment and released growth factors on the direct conversion process. RESULTS: We establish a new in vitro culture system of postnatal astrocytes without epidermal growth factor that reflects the direct conversion rate in the injured, neuroinflammatory environment in vivo. We demonstrate that the growth factor combination corresponding to the injured environment defines the ability of glia to be directly converted to neurons. Using this culture system, we show that chromatin structural protein high mobility group box 2 (HMGB2) regulates the direct conversion rate downstream of the growth factor combination. We further demonstrate that Hmgb2 cooperates with neurogenic fate determinants, such as Neurog2, in opening chromatin at the loci of genes regulating neuronal maturation and synapse formation. Consequently, early chromatin rearrangements occur during direct fate conversion and are necessary for full fate conversion. CONCLUSIONS: Our data demonstrate novel growth factor-controlled regulation of gene expression during direct fate conversion. This regulation is crucial for proper maturation of induced neurons and could be targeted to improve the repair process.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Enhanced Neurogenesis; Fate Specification; Reactive Gliosis; Brain Repair; Label-free; Transcription; Fibroblasts; Expression; Mechanisms; Proteins
ISSN (print) / ISBN 1474-760X
e-ISSN 1465-6906
Journal Genome Biology
Quellenangaben Volume: 26, Issue: 1, Pages: , Article Number: 100 Supplement: ,
Publisher BioMed Central
Publishing Place Campus, 4 Crinan St, London N1 9xw, England
Non-patent literature Publications
Reviewing status Peer reviewed
Institute(s) Institute of Stem Cell Research (ISF)
Research Unit Central Nervous System Regeneration (CNSR)
CF Metabolomics & Proteomics (CF-MPC)
Grants German research foundation (DFG)
Fritz Thyssen Foundation
Research Grant Program: Cellular Dynamics and Regulatory Pathways for Successful Regeneration
ERC Chrono Neurorepair
Graduate School for Systemic Neurosciences GSN-LMU

Projekt DEAL