Jauch, A.T.* ; Sailer, J.* ; Braun, J.* ; Czeslik, E.* ; Geyer, J.* ; Eberhagen, C. ; Vollmar, A.M.* ; Zischka, H. ; Sieber, S.A.* ; Zahler, S.*
Neocarzilin A induces apoptosis and mitochondrial disturbance by targeting reticulon 4-mediated endoplasmic reticulum stress.
Cell Death Discov. 11:278 (2025)
Natural compounds are a valuable source of highly active biomolecules for the discovery of innovative drug targets as well as drug leads. The natural compound neocarzilin A (NCA) exhibits pronounced antiproliferative and antimigratory activity, which we previously ascribed to the target proteins vesicle amine transporter protein 1 (VAT-1) and bone marrow stromal antigen 2 (BST-2). We here additionally demonstrate the perturbation of mitochondrial functions (fragmentation of mitochondrial networks, ultrastructural changes, increased Opa1 splicing, loss of mitochondrial membrane potential, and excessive ROS generation) upon treatment with NCA. We observe impairment of the electron transfer chain and diminished ATP synthesis. Furthermore, NCA triggers apoptosis via activation of caspase-8, enhanced Bid processing, and cytochrome c release from mitochondria into the cytosol, leading to the activation of caspase-3 and -9 and, finally, PARP cleavage and DNA fragmentation. Endoplasmic reticulum (ER) stress is induced by treatment with NCA, and subsequently, the unfolded protein response (UPR) via the protein kinase r-like ER kinase (PERK) branch is prompted. Proteomic ABPP data indicate reticulon 4 (Rtn4, Nogo), an ER-located protein mainly involved in shaping ER tubules and maintaining proper ER function, as a promising hit to explain those effects. This novel molecular target was verified by co-staining of the target probe NC-4 and Rtn4, as well as RNA interference experiments, which resulted in reduced responsiveness of HeLa cells to NCA treatment. We propose NCA as a powerful tool to study the biology of Rtn4, and to develop more specific modulators of reticulons in the future. Furthermore, we introduce-to our knowledge-the first small molecular modulator of reticulon proteins.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Proteins; Identification; Vat-1
Keywords plus
Language
english
Publication Year
2025
Prepublished in Year
0
HGF-reported in Year
2025
ISSN (print) / ISBN
2058-7716
e-ISSN
2058-7716
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 11,
Issue: 1,
Pages: ,
Article Number: 278
Supplement: ,
Series
Publisher
Springer
Publishing Place
Campus, 4 Crinan St, London, N1 9xw, England
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30203 - Molecular Targets and Therapies
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-505200-003
Grants
Projekt DEAL
Copyright
Erfassungsdatum
2025-07-11