PuSH - Publication Server of Helmholtz Zentrum München

Peng, H. ; Pfeiffer, S. ; Varynskyi, B. ; Qiu, M. ; Srinark, C. ; Jin, X.* ; Zhang, X. ; Williams, K.* ; Groveman, B.R.* ; Foliaki, S.T.* ; Race, B.* ; Thomas, T.* ; Chen, C.* ; Müller, C. ; Kovács, K.J.* ; Arzberger, T.* ; Momma, S.* ; Haigh, C.L.* ; Schick, J.A.

Prion-induced ferroptosis is facilitated by RAC3.

Nat. Commun. 16:5385 (2025)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Prions are infectious agents that initiate transmissible spongiform encephalopathies, causing devastating neuronal destruction in Creutzfeldt-Jakob and Kuru disease. Rapid cell death depends on presence of the endogenous prion protein PrPC, but its mechanistic contribution to pathogenesis is unclear. Here we investigate the molecular role of PrPC, reactive oxygen species and lipid metabolism in ferroptosis susceptibility, a regulated cell death process characterized by lipid peroxidation. We discover that elevated expression of the cellular prion PrPC creates a relaxed oxidative milieu that favors accumulation of unsaturated long-chain phospholipids responsible for ferroptotic death. This condition is sustained by the luminal protein glutathione peroxidase 8, which detoxifies reactive species produced by protein misfolding. Consequently, both PrPC and infectious Creutzfeldt-Jakob disease (CJD) prions trigger ferroptotic markers and sensitization. This lethality is further enhanced by RAC3, a small GTPase. Depletion of RAC3 is observed solely in pathologically afflicted cortices in CJD patients, revealing a synergistic modulation of lipids and reactive species that drives ferroptosis susceptibility. Together, the results show that PrPC initially suppresses oxidative stress, attenuates cellular defenses, and establishes a systemic vulnerability to the ferroptotic cascade. These results provide insight into the mechanism underlying regulation of ferroptosis in prion diseases and highlight potential therapeutic targets for diseases involving dysregulated cell death processes.
Impact Factor
Scopus SNIP
Altmetric
15.700
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords Endoplasmic-reticulum Stress; Induced Oxidative Stress; Cell-death; Protein; Accumulation; Propagation; Expression; Resistant; Transport; Toxicity
Language english
Publication Year 2025
HGF-reported in Year 2025
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Quellenangaben Volume: 16, Issue: 1, Pages: , Article Number: 5385 Supplement: ,
Publisher Nature Publishing Group
Publishing Place London
Reviewing status Peer reviewed
Institute(s) Research Unit Signaling and Translation (SAT)
Research Unit BioGeoChemistry and Analytics (BGC)
POF-Topic(s) 30203 - Molecular Targets and Therapies
30202 - Environmental Health
Research field(s) Enabling and Novel Technologies
Environmental Sciences
PSP Element(s) G-509800-005
G-504800-001
Grants National Institutes of Health (NIAID)
Undergraduates Training Program for Innovation and Entrepreneurship of Hainan Province
Specific Research Fund of the Innovation Platform for Academicians of Hainan Province
Helmholtz Center Munich
DFG
German Research Foundation (DFG)
Innovation Platform for Academicians of Hainan Province
Deutsche Forschungsgemeinschaft (German Research Foundation)
Scopus ID 105008881184
PubMed ID 40562790
Erfassungsdatum 2025-06-27