Santoso, R.* ; Guignon, L.* ; Deissmann, G.* ; Poonoosamy, J.*
    
    
        
Investigating the metastability of amorphous calcium carbonate by droplet microfluidics experiments using machine learning.
    
    
        
    
    
        
        Sci. Rep. 15, 11 (2025)
    
    
    
      
      
	
	    Amorphous calcium carbonate (ACC) plays an important role in the crystallization pathways of calcite and its polymorphs influencing many natural and anthropogenic processes, such as carbon sequestration. Characterizing the dissolution rate of ACC in presence of additives of contaminants in favor of crystalline phases is challenging as such reactions occur readily in bulk solution. Droplet microfluidics offers a solution by confining ACC within a droplet, enabling a quantification of the transformation rate of ACC into crystalline phases. However, accurate quantification of this transformation requires analyzing more than thousands of droplets identifying the different polymorphs of calcium carbonate during an experiment, which is labor-intensive. Here we develop a visual-based machine learning method, combining cascading U-Net and K-Means clustering, to allow efficient analysis of droplet microfluidics experiment results. Using our method, we accurately inspect 11,288 droplets over 6 hours of experimental time to identify the polymorphs, using a CPU core in a laptop for only 42 minutes. This is achieved with manual labeling of 11 experimental microscopy images before augmentations. From our analyses the transformation rate of ACC into its crystalline phases can be inferred. The transformation rate indicates an increasing stability of the ACC phase in confinement. Our method is generalizable and can be applied to different setups of droplet microfluidics experiments, facilitating efficient experimentation and analysis of complex crystallization processes.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Scientific Article
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Amorphous Calcium Carbonate ; Droplet Microfluidics ; Machine Learning; Reactive Transport; In-situ; Crystallization; Precipitation; Nucleation; Phosphate; Water
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2025
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2025
    
 
    
    
        ISSN (print) / ISBN
        2045-2322
    
 
    
        e-ISSN
        2045-2322
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume: 15,  
	    Issue: 1,  
	    Pages: 11 
	    Article Number: ,  
	    Supplement: ,  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Nature Publishing Group
        
 
        
            Publishing Place
            London
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
    
        Institute(s)
        Helmholtz AI - FZJ (HAI - FZJ)
    
 
    
        POF-Topic(s)
        
    
 
    
        Research field(s)
        
    
 
    
        PSP Element(s)
        
    
 
    
        Grants
        European Research Council (ERC)
JURECA58 at Forschungszentrum Julich
European Research Council through the project GENIES (ERC)
Helmholtz AI project
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2025-06-29