de la Rosa, E.* ; Reyes, M.* ; Liew, S.L.* ; Hutton, A.* ; Wiest, R.* ; Kaesmacher, J.* ; Hanning, U.* ; Hakim, A.J.* ; Zubal, R.* ; Valenzuela, W.* ; Robben, D.* ; Sima, D.M.* ; Anania, V.* ; Brys, A.* ; Meakin, J.A.* ; Mickan, A.* ; Broocks, G.* ; Heitkamp, C.* ; Gao, S.* ; Liang, K.W.* ; Zhang, Z.* ; Rahman Siddiquee, M.M.* ; Myronenko, A.* ; Ashtari, P.* ; Van Huffel, S.* ; Jeong, H.* ; Yoon, C.* ; Kim, C.* ; Huo, J.* ; Ourselin, S.* ; Sparks, R.* ; Clèrigues, A.* ; Oliver, A.J.* ; Lladó, X.* ; Chalcroft, L.* ; Pappas, I.* ; Bertels, J.* ; Heylen, E.* ; Moreau, J.* ; Hatami, N.* ; Frindel, C.* ; Qayyum, A.* ; Mazher, M.* ; Puig, D.* ; Lin, S.C.* ; Juan, C.J.* ; Hu, T.* ; Boone, L.* ; Goubran, M.* ; Liu, Y.J.* ; Wegener, S.* ; Kofler, F. ; Ezhov, I.* ; Shit, S.* ; Hernandez Petzsche, M.R.* ; Müller, M.* ; Menze, B.* ; Kirschke, J.S.* ; Wiestler, B.*
DeepISLES: A clinically validated ischemic stroke segmentation model from the ISLES'22 challenge.
Nat. Commun. 16:7357 (2025)
Diffusion-weighted MRI is critical for diagnosing and managing ischemic stroke, but variability in images and disease presentation limits the generalizability of AI algorithms. We present DeepISLES, a robust ensemble algorithm developed from top submissions to the 2022 Ischemic Stroke Lesion Segmentation challenge we organized. By combining the strengths of best-performing methods from leading research groups, DeepISLES achieves superior accuracy in detecting and segmenting ischemic lesions, generalizing well across diverse axes. Validation on a large external dataset (N = 1685) confirms its robustness, outperforming previous state-of-the-art models by 7.4% in Dice score and 12.6% in F1 score. It also excels at extracting clinical biomarkers and correlates strongly with clinical stroke scores, closely matching expert performance. Neuroradiologists prefer DeepISLES' segmentations over manual annotations in a Turing-like test. Our work demonstrates DeepISLES' clinical relevance and highlights the value of biomedical challenges in developing real-world, generalizable AI tools. DeepISLES is freely available at https://github.com/ezequieldlrosa/DeepIsles .
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Lesion Segmentation; Computed-tomography; Benchmark; Association; Images; Core
Keywords plus
Language
english
Publication Year
2025
Prepublished in Year
0
HGF-reported in Year
2025
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 16,
Issue: 1,
Pages: ,
Article Number: 7357
Supplement: ,
Series
Publisher
Nature Publishing Group
Publishing Place
London
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-530001-001
Grants
Korea Evaluation Institute of Industrial Technology (KEIT) - Korea government (MOTIE)
Artificial Intelligence Graduate School Program (POSTECH)
Institute of Information & communications Technology Planning & Evaluation (IITP) - Korea government (MSIT)
Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education
Swiss Heart Foundation
Swiss National Science Foundation
National Institutes of Health, National Institutes of Neurological Disorders and Stroke (NIH NINDS)
Flemish Government (AI Research Program)
Helmut Horten Foundation
Copyright
Erfassungsdatum
2025-10-10