Michlmayr, H.* ; Siller, M.* ; Kenjeric, L.* ; Doppler, M.* ; Malachová, A.* ; Hofer, M.J.* ; Hametner, C.* ; Schweiger, W.* ; Steiner, B.* ; Kugler, K.G. ; Mayer, K.F.X. ; Buerstmayr, H.* ; Schuhmacher, R.* ; Krska, R.* ; Labrou, N.E.* ; Papageorgiou, A.C.* ; Adam, G.*
Detoxification of deoxynivalenol by pathogen-inducible tau-class glutathione transferases from wheat.
J. Biol. Chem. 301:110600 (2025)
Deoxynivalenol (DON) is a toxicologically relevant trichothecene mycotoxin frequently found in cereal products. It is a virulence factor produced by the plant pathogen Fusarium graminearum during cereal crop infections. Investigating plant defense mechanisms is crucial for understanding plant resistance to F. graminearum and identifying new biocatalysts for DON detoxification. Previous studies identified DON-thiol adducts in cereal samples, indicating partial DON detoxification by glutathione transferases (GSTs). DON possesses two electrophilic centers for thiol conjugation, resulting in either epoxide opening at C13 or Michael addition at C10. At present, information on plant GSTs that catalyze these reactions is limited. In this study, Fusarium-inducible wheat GSTs were identified by analyzing the transcriptome of Fusarium-infected wheat heads. Twelve highly induced genes of the tau and phi GST classes were heterologously expressed and purified, biochemically characterized with model substrates, and assayed for activity with DON. Use of liquid chromatography coupled to mass spectrometry showed that four of the selected tau class GSTs conjugated DON to glutathione (GSH) by epoxide opening (DON-13-GSH) and/or the reversible Michael addition reaction (DON-10-GSH). The crystal structure of a wheat GST (herein designated "TaGST-10") in complex with DON-13-GSH was solved at a resolution of 2.3 Å and provided insights into the binding of DON at the active site of tau class GSTs. Our results corroborate the hypothesis that enzyme-catalyzed, glutathione-mediated DON detoxification may be involved in plant response to Fusarium infection.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Fusarium ; Deoxynivalenol ; Epoxide ; Glutathione Transferase ; Wheat; Fusarium-graminearum; S-transferases; Gene; Proteins; Stress; Trichothecenes; Identification; Expression; Features; Reveals
Keywords plus
Language
english
Publication Year
2025
Prepublished in Year
0
HGF-reported in Year
2025
ISSN (print) / ISBN
0021-9258
e-ISSN
1083-351X
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 301,
Issue: 10,
Pages: ,
Article Number: 110600
Supplement: ,
Series
Publisher
American Society for Biochemistry and Molecular Biology
Publishing Place
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
Research field(s)
Environmental Sciences
PSP Element(s)
G-503500-002
Grants
Austrian Research Promotion Agency FFG
FWF Special Research Program SFB Fusarium
COMET project "Accelerated analysis" of the Austrian Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI)
Austrian federal ministry BMK
Austrian federal ministry BMDW
Austrian provinces Lower Austria, Upper Austria and Vienna within the scope of COMET Competence Centers for Excellent Technologies
Erwin-Schroedinger-Fellowship of the Austrian Science Fund (FWF)
Copyright
Erfassungsdatum
2025-10-24