PuSH - Publication Server of Helmholtz Zentrum München

Manduchi, L.* ; Meister, C.* ; Pandey, K.C.* ; Bamler, R.* ; Cotterell, R.* ; Däubener, S.* ; Fellenz, S.* ; Fischer, A.* ; Gärtner, T.* ; Kirchler, M.* ; Kloft, M.* ; Li, Y.* ; Lippert, C.* ; de Melo, G.* ; Nalisnick, E.* ; Ommer, B.* ; Ranganath, R.* ; Waldron, M.* ; Ullrich, K.* ; Van den Broeck, G.* ; Vogt, J.E.* ; Wang, Y.* ; Wenzel, F.* ; Wood, F.* ; Mandt, S.* ; Fortuin, V.

On the challenges and opportunities in generative AI.

Trans. Machine Learn. Res. 2025, accepted (2025)
Postprint
The field of deep generative modeling has grown rapidly in the last few years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models exhibit several fundamental shortcomings that hinder their widespread adoption across domains. In this work, our objective is to identify these issues and highlight key unresolved challenges in modern generative AI paradigms that should be addressed to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with insights for exploring fruitful research directions, thus fostering the development of more robust and accessible generative AI solutions.
Impact Factor
Scopus SNIP
0.000
0.000
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Language english
Publication Year 2025
HGF-reported in Year 2025
ISSN (print) / ISBN 2835-8856
e-ISSN 2835-8856
Quellenangaben Volume: 2025 Issue: , Pages: , Article Number: , Supplement: ,
Publisher Journal of Machine Learning Research Inc.
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-530015-001
Scopus ID 105014820251
Erfassungsdatum 2025-10-22