Mendelian randomization (MR) identifies causal relationships from observational data but has increased Type 1 error rates (T1E) when genetic instruments are limited to a single associated region, a typical scenario for molecular exposures. We developed MR-link-2, which leverages summary statistics and linkage disequilibrium (LD) to estimate causal effects and pleiotropy in a single region. We compare MR-link-2 to other cis MR methods: i) In simulations, MR-link-2 has calibrated T1E and high power. ii) We reidentify metabolic reactions from three metabolic pathway references using four independent metabolite quantitative trait locus studies. MR-link-2 often (76%) outperforms other methods in area under the receiver operator characteristic curve (AUC) (up to 0.80). iii) For canonical causal relationships between complex traits, MR-link-2 has lower per-locus T1E (0.096 vs. min. 0.142, at 5% level), identifying all but one of the true causal links, reducing cross-locus causal effect heterogeneity to almost half. iv) Testing causal direction between blood cell compositions and marker gene expression shows MR-link-2 has superior AUC (0.82 vs. 0.68). Finally, analyzing causality between metabolites not directly connected by canonical reactions, only MR-link-2 identifies the causal relationship between pyruvate and citrate ( α ̂ = 0.11, P = 7.2⋅10-7), a key citric acid cycle reaction. Overall, MR-link-2 identifies pleiotropy-robust causality from summary statistics in single associated regions, making it well suited for applications to molecular phenotypes.
GrantsSwiss National Science Foundation European Union's Horizon Europe research and innovation programme Dutch Cancer Society Biogen - Oncode Institute Dutch Research Council UK Medical Research Council