Decoding ferroptosis for cancer therapy.
    
    
        
    
    
        
        Nat. Rev. Cancer, DOI: 10.1038/s41568-025-00864-1 (2025)
    
    
    
      
      
	
	    Resisting cell death is a pivotal hallmark of cancer and one of several increasingly actionable functional capabilities acquired by cancer cells to sustain their malignant state. Since the early 2000s, the discovery of multiple regulated cell death programmes has intensified interest in targeting these maladaptive traits that cancer cells employ to resist cellular demise. Among these, ferroptosis - the lethal outcome of iron-dependent (phospho)lipid peroxidation - stands apart from other regulated cell death mechanisms, as it is persistently suppressed while lacking an activating signal. In cancer research, ferroptosis has garnered considerable attention, with growing evidence suggesting that its deregulation intersects with other hallmarks of malignancy, thus positioning it as a pleiotropic target. However, in the absence of approved ferroptosis-based drugs and despite substantial advances in understanding the metabolic manoeuvres of cancer cells to evade ferroptosis, its heralded translational value remains somewhat speculative at this stage. This Review reconciles the biochemical foundation of ferroptosis, the evidence supporting its role in cancer biology and the potential strategies for rationalizing targeted therapies to induce ferroptosis-prone states in malignancies. Building on this foundation, we explore contentious issues surrounding ferroptosis, including its implications for immunogenicity and redox imbalances in cancer. Finally, we address critical considerations such as therapeutic windows and biomarkers of ferroptosis, which are prerequisites for successful translation into clinical oncology.
	
	
	    
	
       
      
	
	    
		Impact Factor
		Scopus SNIP
		Web of Science
Times Cited
		Scopus
Cited By
		Altmetric
		
	     
	    
	 
       
      
     
    
        Publication type
        Article: Journal article
    
 
    
        Document type
        Review
    
 
    
        Thesis type
        
    
 
    
        Editors
        
    
    
        Keywords
        Glutathione-peroxidase 4; Cell-death; Vitamin-e; Oxidative Stress; Lipid-peroxidation; Prostate-cancer; Iron; Selenium; Gpx4; Pathways
    
 
    
        Keywords plus
        
    
 
    
    
        Language
        english
    
 
    
        Publication Year
        2025
    
 
    
        Prepublished in Year
        0
    
 
    
        HGF-reported in Year
        2025
    
 
    
    
        ISSN (print) / ISBN
        1474-175X
    
 
    
        e-ISSN
        1474-1768
    
 
    
        ISBN
        
    
    
        Book Volume Title
        
    
 
    
        Conference Title
        
    
 
	
        Conference Date
        
    
     
	
        Conference Location
        
    
 
	
        Proceedings Title
        
    
 
     
	
    
        Quellenangaben
        
	    Volume:  
	    Issue:  
	    Pages:  
	    Article Number:  
	    Supplement:  
	
    
 
    
        
            Series
            
        
 
        
            Publisher
            Nature Publishing Group
        
 
        
            Publishing Place
            Heidelberger Platz 3, Berlin, 14197, Germany
        
 
	
        
            Day of Oral Examination
            0000-00-00
        
 
        
            Advisor
            
        
 
        
            Referee
            
        
 
        
            Examiner
            
        
 
        
            Topic
            
        
 
	
        
            University
            
        
 
        
            University place
            
        
 
        
            Faculty
            
        
 
    
        
            Publication date
            0000-00-00
        
 
         
        
            Application date
            0000-00-00
        
 
        
            Patent owner
            
        
 
        
            Further owners
            
        
 
        
            Application country
            
        
 
        
            Patent priority
            
        
 
    
        Reviewing status
        Peer reviewed
    
 
     
    
        POF-Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Research field(s)
        Genetics and Epidemiology
    
 
    
        PSP Element(s)
        G-506900-001
    
 
    
        Grants
        European Research Council (ERC) under the European Union
CRC TRR 353
German Federal Ministry of Education and Research (BMBF) FERROPATH
Deutsche Forschungsgemeinschaft (DFG)
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2025-10-14