PuSH - Publication Server of Helmholtz Zentrum München

Hrovatin, K. ; Moinfar, A.A. ; Zappia, L. ; Parikh, S. ; Tejada Lapuerta, A. ; Lengerich, B.* ; Kellis, M.* ; Theis, F.J.

Integrating single-cell RNA-seq datasets with substantial batch effects.

BMC Genomics 26:974 (2025)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Integration of single-cell RNA-sequencing (scRNA-seq) datasets is standard in scRNA-seq analysis. Nevertheless, current computational methods struggle to harmonize datasets across systems such as species, organoids and primary tissue, or different scRNA-seq protocols, including single-cell and single-nuclei. Conditional variational autoencoders (cVAE) are a popular integration method, however, existing strategies for stronger batch correction have limitations. Increasing the Kullback-Leibler divergence regularization does not improve integration and adversarial learning removes biological signals. Here, we propose sysVI, a cVAE-based method employing VampPrior and cycle-consistency constraints. We show that sysVI integrates across systems and improves biological signals for downstream interpretation of cell states and conditions.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Keywords Adversarial Learning ; Benchmarking ; Data Integration ; Kl Regularization Strength ; Latent Cycle-consistency ; Single-cell Rna Sequencing (scrna-seq) ; Vampprior; Organoids; Retina; Atlas
ISSN (print) / ISBN 1471-2164
e-ISSN 1471-2164
Journal BMC Genomics
Quellenangaben Volume: 26, Issue: 1, Pages: , Article Number: 974 Supplement: ,
Publisher Bmc
Publishing Place Campus, 4 Crinan St, London N1 9xw, England
Reviewing status Peer reviewed
Grants Technische Universitt Mnchen (1025)