In situ cryo-electron tomography (cryo-ET) has emerged as the method of choice to investigate the structures of biomolecules in their native context. However, challenges remain for the efficient production and sharing of large-scale cryo-ET datasets. Here, we combined cryogenic plasma-based focused ion beam (cryo-PFIB) milling with recent advances in cryo-ET acquisition and processing to generate a dataset of 1,829 annotated tomograms of the green alga Chlamydomonas reinhardtii, which we provide as a community resource to drive method development and inspire biological discovery. To assay data quality, we performed subtomogram averaging of both soluble and membrane-bound complexes ranging in size from >3 MDa to ∼200 kDa, including 80S ribosomes, Rubisco, nucleosomes, microtubules, clathrin, photosystem II, and mitochondrial ATP synthase. The majority of these density maps reached sub-nanometer resolution, demonstrating the potential of this C. reinhardtii dataset as well as the promise of modern cryo-ET workflows and open data sharing to empower visual proteomics.