PuSH - Publication Server of Helmholtz Zentrum München

He, H. ; Paetzold, J.C.* ; Börner, N.* ; Riedel, E.* ; Gerl, S. ; Schneider, S.* ; Fisher, C.* ; Ezhov, I.* ; Shit, S.* ; Li, H.* ; Rückert, D.* ; Aguirre, J.* ; Biedermann, T.* ; Darsow, U.* ; Menze, B.* ; Ntziachristos, V.

Automatic quantification of human skin anatomy and microvasculature biomarkers by optoacoustic mesoscopy with machine learning.

In:. SPIE, 2025. DOI: 10.1117/12.3098201 (Proc. SPIE ; 13938)
DOI
We developed a deep learning-based framework to analyze and quantify morphological skin features recorded by raster-scan optoacoustic mesoscopy (RSOM) and extract imaging biomarkers for disease characterization. The automatic biomarker extraction by our method was found to be strongly correlated to physician observations and histology. We investigated for the first time the relation of a number of microvasculature features to aging from 75 healthy volunteers and found that fine microvasculature in the upper dermal layer offers the strongest relation to age progression.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Conference contribution
ISSN (print) / ISBN 0277-786X
e-ISSN 1996-756X
Quellenangaben Volume: 13938 Issue: , Pages: , Article Number: , Supplement: ,
Publisher SPIE
Reviewing status Peer reviewed