Open Access Green as soon as Postprint is submitted to ZB.
The shift in plant species composition in a subarctic mountain birch forest floor due to climate change would modify the biogenic volatile organic compound emission profile.
Plant Soil 352, 199-215 (2012)
Background and aims Mountain birch forests dominate in the Subarctic but little is known of their nonmethane biogenic volatile organic compound (BVOC) emissions. The dwarf shrubs Empetrum hermaphroditum, Vaccinium myrtillus and Vaccinium uliginosum co-dominate in the forest floors of these forests. The abundance of these three dwarf shrubs relative to each other could be affected by climate warming expected to increase nutrient availability by accelerating litter decomposition and nutrient mineralization. We 1) compared the BVOC emission profiles of vegetation covers dominated by E. hermaphroditum and V. myrtillus plus V. uliginosum in a subarctic mountain birch forest floor, 2) distinguished the BVOCs emitted from plants and soil and 3) measured how the BVOC emissions from the different vegetation covers differed under darkness. Methods BVOCs were sampled during two growing seasons using a conventional ecosystem chamberbased method, collected on adsorbent and analyzed with gas chromatography–mass spectrometry.Background and aims Mountain birch forests dominate in the Subarctic but little is known of their nonmethane biogenic volatile organic compound (BVOC) emissions. The dwarf shrubs Empetrum hermaphroditum, Vaccinium myrtillus and Vaccinium uliginosum co-dominate in the forest floors of these forests. The abundance of these three dwarf shrubs relative to each other could be affected by climate warming expected to increase nutrient availability by accelerating litter decomposition and nutrient mineralization. We 1) compared the BVOC emission profiles of vegetation covers dominated by E. hermaphroditum and V. myrtillus plus V. uliginosum in a subarctic mountain birch forest floor, 2) distinguished the BVOCs emitted from plants and soil and 3) measured how the BVOC emissions from the different vegetation covers differed under darkness. Methods BVOCs were sampled during two growing seasons using a conventional ecosystem chamberbased method, collected on adsorbent and analyzed with gas chromatography–mass spectrometry.
Altmetric
Additional Metrics?
Edit extra informations
Login
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
BVOC; Subarctic; Betula pubescens ssp; czerepanovii; Empetrum nigrum ssp; hermaphroditum; Vaccinium myrtillus; Vaccinium uliginosum; SIMULATED ENVIRONMENTAL-CHANGE; ISOPRENE EMISSION; NORTHERN SWEDEN; CARBON BUDGET; UV-B; RESPONSES; TUNDRA; COMMUNITY; WETLAND; ECOSYSTEMS
ISSN (print) / ISBN
0032-079X
e-ISSN
1573-5036
Journal
Plant and Soil
Quellenangaben
Volume: 352,
Issue: 1-2,
Pages: 199-215
Publisher
Springer
Non-patent literature
Publications
Reviewing status
Peer reviewed
Institute(s)
Research Unit Environmental Simulation (EUS)