PuSH - Publication Server of Helmholtz Zentrum München

Trede, D.* ; Schiffler, S.* ; Becker, M.* ; Wirtz, S.* ; Steinhorst, K.* ; Strehlow, J.* ; Aichler, M. ; Kobarg, J.H.* ; Oetjen, J.* ; Dyatlov, A.* ; Heldmann, S.* ; Walch, A.K. ; Thiele, H.* ; Maass, P.* ; Alexandrov, T.*

Exploring three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry data: Three-dimensional spatial segmentation of mouse kidney.

Anal. Chem. 84, 6079-6087 (2012)
DOI PMC
Open Access Green as soon as Postprint is submitted to ZB.
Three-dimensional (3D) imaging has a significant impact on many challenges of life sciences. Three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is an emerging label-free bioanalytical technique capturing the spatial distribution of hundreds of molecular compounds in 3D by providing a MALDI mass spectrum for each spatial point of a 3D sample. Currently, 3D MALDI-IMS cannot tap its full potential due to the lack efficient computational methods for constructing, processing, and visualizing large and complex 3D MALDI-IMS data. We present a new pipeline of efficient computational methods, which enables analysis and interpretation of a 3D MALDI-IMS data set. Construction of a MALDI-IMS data set was done according to the state-of-the-art protocols and involved sample preparation, spectra acquisition, spectra preprocessing, and registration of serial sections. For analysis and interpretation of 3D MALDI-IMS data, we applied the spatial segmentation approach which is well-accepted in analysis of two-dimensional (2D) MALDI-IMS data. In line with 2D data analysis, we used edge-preserving 3D image denoising prior to segmentation to reduce strong and chaotic spectrum-to-spectrum variation. For segmentation, we used an efficient clustering method, called bisecting k-means, which is optimized for hierarchical clustering of a large 3D MALDI-IMS data set. Using the proposed pipeline, we analyzed a central part of a mouse kidney using 33 serial sections of 3.5 μm thickness after the PAXgene tissue fixation and paraffin embedding. For each serial section, a 2D MALDI-IMS data set was acquired following the standard protocols with the high spatial resolution of 50 μm. Altogether, 512 495 mass spectra were acquired that corresponds to approximately 50 gigabytes of data. After registration of serial sections into a 3D data set, our computational pipeline allowed us to reveal the 3D kidney anatomical structure based on mass spectrometry data only. Finally, automated analysis discovered molecular masses colocalized with major anatomical regions. In the same way, the proposed pipeline can be used for analysis and interpretation of any 3D MALDI-IMS data set in particular of pathological cases.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.856
1.646
92
101
Tags
Annotations
Special Publikation
Hide on homepage

Edit extra information
Edit own tags
Private
Edit own annotation
Private
Hide on publication lists
on hompage
Mark as special
publikation
Publication type Article: Journal article
Document type Scientific Article
Keywords TISSUE-SECTIONS; PROTEIN; ALGORITHMS; PEPTIDES; FRONTIER; BIOLOGY; CANCER
Language english
Publication Year 2012
HGF-reported in Year 2012
ISSN (print) / ISBN 0003-2700
e-ISSN 1520-6882
Quellenangaben Volume: 84, Issue: 14, Pages: 6079-6087 Article Number: , Supplement: ,
Publisher American Chemical Society (ACS)
Reviewing status Peer reviewed
POF-Topic(s) 30205 - Bioengineering and Digital Health
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Research field(s) Enabling and Novel Technologies
PSP Element(s) G-500390-001
G-500300-001
PubMed ID 22720760
Scopus ID 84863954470
Erfassungsdatum 2012-07-26