Open Access Green as soon as Postprint is submitted to ZB.
Raw material classification by means of hyperspectral imaging and hierarchical temporal memories.
IEEE Sens. J. 12, 2767-2775 (2012)
The recently proposed hierarchical temporal memory (HTM) paradigm of soft computing is applied to the detection and classification of foreign materials in a conveyor belt carrying tobacco leaves in a cigarette manufacturing industry. The HTM has been exposed to hyperspectral imaging data from 10 types of unwanted materials intermingled with tobacco leaves. The impact of the HTM architecture and the configuration of internal parameters on its classification performance have been explored. Classification results match or surpass those attained with other methods, such as Artificial Neural Networks (ANNs), with the advantage that HTM are able to handle raw spectral data and no preprocessing, spectral compression, or reflectance correction is required. It is also demonstrated that an optimized configuration of the HTM architecture and internal values can be derived from the statistical properties of the hyperspectral data, allowing the extension of the approach to other classification problems.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
1.520
1.798
5
5
Annotations
Special Publikation
Hide on homepage
Publication type
Article: Journal article
Document type
Scientific Article
Keywords
Hierarchical Temporal Memory (htm) ; Hyperspectral Imaging ; Material Classification ; Spectroscopic Sensor; Pattern-Recognition; Quality-Control; Sensor; Model
Language
english
Publication Year
2012
HGF-reported in Year
2012
ISSN (print) / ISBN
1530-437X
e-ISSN
1558-1748
Journal
IEEE Sensors Journal
Quellenangaben
Volume: 12,
Issue: 9,
Pages: 2767-2775
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Reviewing status
Peer reviewed
Institute(s)
Institute of Biological and Medical Imaging (IBMI)
POF-Topic(s)
30205 - Bioengineering and Digital Health
Research field(s)
Enabling and Novel Technologies
PSP Element(s)
G-505500-001
WOS ID
WOS:000306993700007
Scopus ID
84864537080
Erfassungsdatum
2012-08-30