The potential of optically stimulated luminescence of wire-bond chip card modules, used in health insurance, ID, cash and credit cards for retrospective and accident dosimetry is investigated. Chip card modules obtained directly from the producer, using a widely spread UV-cured epoxy product for encapsulation, are used as basis for the study. The radiation sensitivity is due to silica grains added to the epoxy for controlling the thixotropic properties. Luminescence properties are complex due to the presumed thermo-optical release of electrons from the epoxy and transfer into the silica. Best results and highest sensitivity are obtained by using no or only low preheat treatments. A high degree of fading of the OSL signal during storage at room temperature is observed, which is tentatively explained by the superposition of thermal decay of shallow OSL traps and athermal (anomalous) decay of deeper OSL traps. The dose response of the OSL signal shows exponentially saturating behaviour, with saturation doses of 77 Gy or 9.6 Gy, depending on pretreatment. Dose recovery tests show that given doses can be recovered within a deviation of +/- 14%, if measured signals are corrected for fading. The minimum detectable dose is estimated at similar to 3 mGy, similar to 10 mGy and similar to 20 mGy for readouts immediately, 1 day and 10 days after exposure, respectively.