The germinal center (GC) reaction has a pivotal function in human B-cell lymphomagenesis. Genetic aberrations occurring during somatic hypermutation and class switch recombination deregulate key factors controlling B-cell physiology and proliferation. Several human lymphoma entities are characterized by a constitutive GC phenotype and ongoing somatic hypermutation, but the molecular basis for this phenomenon is only partly understood. We have investigated the reasons for a constitutive GC-like program in Burkitt's lymphoma cells. Here, overexpression of c-Myc leads to a centroblast phenotype, promotes high constitutive expression of the key GC factors Bcl-6, E2A and activation-induced cytidine deaminase and contributes to proliferation and somatic hypermutation. Our findings elucidate how the activity of a pivotal transcription factor may freeze B-cell lymphoma cells in a constitutive GC-like state that is even maintained at an extrafollicular location.