Nitrogen fertilization affects bacteria utilizing plant-derived carbon in the rhizosphere of beech seedlings.
Plant Soil 407, 203-215 (2016)
Background and aims: Forest ecosystems may act as sinks for or source of atmospheric CO2. While inorganic nitrogen (N) fertilization increases aboveground tree biomass, the effects on soil and rhizosphere microorganisms are less clear, indicating potentially unpredictable changes in nutrient cycling processes maintaining ecosystem functioning. Although plant-derived carbon (C) is the main C source in soils during the vegetation period, information on the response of rhizosphere bacteria assimilating rhizodeposits to increased soil N availability mainly for trees is missing. Methods: We performed a greenhouse experiment with 13C-CO2 labelled young beech seedlings grown under different N fertilization levels. DNA Stable Isotope Probing (DNA-SIP) in combination with TRFLP and pyrosequencing enabled us to identify bacteria assimilating plant-derived C and to assess the main responders phylogenetically. Results: Although above- and belowground allocation of recently fixed photosynthates remained unchanged, microbial rhizosphere community composition was clearly affected by fertilization. Besides, we found lower 13C incorporation into microbial biomass in fertilized soil. Moreover, it could be shown that only a small subset of the rhizosphere microbiome incorporated recently fixed C into its DNA, dominated by Proteobacteria (Alpha- and Betaproteobacteria) and Actinobacteria (Actinomycetales). Conclusions: Our results suggest that N fertilization may change both the diversity of bacterial communities using rhizodeposits and assimilation rates of recently fixed photosynthates. Given the close interaction of beneficial and/or deleterious microbes and plants in the rhizosphere, this could potentially have positive or negative implications for plant performance on long-term.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Keywords
Dna-sip ; Fertilization ; Plant-derived Carbon ; Pyrosequencing ; Rhizosphere Microbiome; Elevated Atmospheric Co2; Norway Spruce Stand; Soil Microbial Biomass; Community Structure; Extraction Method; Ribosomal-rna; Forest Soils; Decomposition; Availability; Additions
Keywords plus
Language
Publication Year
2016
Prepublished in Year
HGF-reported in Year
2016
ISSN (print) / ISBN
0032-079X
e-ISSN
1573-5036
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume: 407,
Issue: 1-2,
Pages: 203-215
Article Number: ,
Supplement: ,
Series
Publisher
Springer
Publishing Place
Dordrecht
Day of Oral Examination
0000-00-00
Advisor
Referee
Examiner
Topic
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
POF-Topic(s)
30202 - Environmental Health
30505 - New Technologies for Biomedical Discoveries
20403 - Sustainable Water Management
Research field(s)
Environmental Sciences
Enabling and Novel Technologies
PSP Element(s)
G-504700-001
G-503890-001
G-504300-005
G-504911-001
Grants
Copyright
Erfassungsdatum
2016-05-10