PuSH - Publication Server of Helmholtz Zentrum München

Zemva, J.* ; Fink, C.A.* ; Fleming, T.H.* ; Schmidt, L.* ; Loft, A. ; Herzig, S. ; Knieß, R.A.* ; Mayer, M.* ; Bukau, B.* ; Nawroth, P.P. ; Tyedmers, J.*

Hormesis enables cells to handle accumulating toxic metabolites during increased energy flux.

Redox Biol. 13, 674-686 (2017)
Publ. Version/Full Text DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Energy production is inevitably linked to the generation of toxic metabolites, such as reactive oxygen and carbonyl species, known as major contributors to ageing and degenerative diseases. It remains unclear how cells can adapt to elevated energy flux accompanied by accumulating harmful by-products without taking any damage. Therefore, effects of a sudden rise in glucose concentrations were studied in yeast cells. This revealed a feedback mechanism initiated by the reactive dicarbonyl methylglyoxal, which is formed non-enzymatically during glycolysis. Low levels of methylglyoxal activate a multi-layered defence response against toxic metabolites composed of prevention, detoxification and damage remission. The latter is mediated by the protein quality control system and requires inducible Hsp70 and Btn2, the aggregase that sequesters misfolded proteins. This glycohormetic mechanism enables cells to pre-adapt to rising energy flux and directly links metabolic to proteotoxic stress. Further data suggest the existence of a similar response in endothelial cells.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords Glucose Metabolism ; Heat Shock Proteins ; Methylglyoxal ; Nutrient Signalling ; Protein Quality Control System ; Reactive Metabolites; Methionine Sulfoxide Reductase; Elegans Life-span; Saccharomyces-cerevisiae; Oxidative Stress; Caenorhabditis-elegans; Mitochondrial-dna; Gene-expression; Dicarbonyl Detoxification; Superoxide-dismutase; Transcription Factor
ISSN (print) / ISBN 2213-2317
e-ISSN 2213-2317
Journal Redox Biology
Quellenangaben Volume: 13, Issue: , Pages: 674-686 Article Number: , Supplement: ,
Publisher Elsevier
Publishing Place Amsterdam [u.a.]
Non-patent literature Publications
Reviewing status Peer reviewed