Mirza-Schreiber, N. ; Zech, M. ; Wilson, R. ; Brunet, T. ; Wagner, M. ; Jech, R.* ; Boesch, S.* ; Škorvánek, M.* ; Necpál, J.* ; Weise, D.* ; Weber, S. ; Mollenhauer, B.* ; Trenkwalder, C.* ; Maier, E.M.* ; Borggraefe, I.* ; Vill, K.* ; Hackenberg, A.* ; Pilshofer, V.* ; Kotzaeridou, U.* ; Schwaibold, E.M.C.* ; Hoefele, J.* ; Waldenberger, M. ; Gieger, C. ; Peters, A. ; Meitinger, T.* ; Schormair, B.* ; Winkelmann, J. ; Oexle, K.
Blood DNA methylation provides an accurate biomarker of KMT2B-related dystonia and predicts onset.
Brain, DOI: 10.1093/brain/awab360 (2021)
Dystonia is a prevalent, heterogeneous movement disorder characterized by involuntarily abnormal postures. Biomarkers of dystonia are notoriously lacking. Here, a biomarker is reported for histone lysine methyltransferase (KMT2B)-deficient dystonia, a leading subtype among the individually rare monogenic dystonias. It was derived by applying a support vector machine to an episignature of 113 DNA CpG sites which, in blood cells, showed significant epigenome-wide association with KMT2B deficiency and at least 1x log-fold change of methylation. This classifier was accurate both when tested on the general population and on samples with various other deficiencies of the epigenetic machinery, thus allowing for definitive evaluation of variants of uncertain significance and identifying patients who may profit from deep brain stimulation, a highly successful treatment in KMT2B-deficient dystonia. Methylation was increased in KMT2B deficiency at all 113 CpG sites. The coefficients of variation of the normalized methylation levels at these sites also perfectly classified the samples with KMT2B-deficient dystonia. Moreover, the mean of the normalized methylation levels correlated well with the age at onset of dystonia (p = 0.003) - being lower in samples with late or incomplete penetrance-thus serving as a predictor of disease onset and severity. Similarly, it may also function in monitoring the recently envisioned treatment of KMT2B deficiency by inhibition of DNA methylation.
Altmetric
Additional Metrics?
Publication type
Article: Journal article
Document type
Scientific Article
Thesis type
Editors
Corresponding Author
Keywords
Kmt2b ; Age At Onset ; Dystonia ; Episignature ; Mode Of Inheritance; Kmt2b; Classification; Episignatures; Diagnosis
Keywords plus
ISSN (print) / ISBN
0006-8950
e-ISSN
1460-2156
ISBN
Book Volume Title
Conference Title
Conference Date
Conference Location
Proceedings Title
Quellenangaben
Volume:
Issue:
Pages:
Article Number:
Supplement:
Series
Publisher
Oxford University Press
Publishing Place
Great Clarendon St, Oxford Ox2 6dp, England
University
University place
Faculty
Publication date
0000-00-00
Application date
0000-00-00
Patent owner
Further owners
Application country
Patent priority
Reviewing status
Peer reviewed
Grants
Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universitat, as part of LMUinnovativ
European Reference Network for Rare Neurological Diseases
Technische Universitat Munchen, Munich, Germany
Helmholtz Zentrum Munchen, Munich, Germany
Charles University, Prague, Czech Republic
Czech Ministry of Education
European Joint Programme on Rare Diseases (EJP RD COFUND-EJP)
Slovak Grant and Development Agency
Operational Programme Integrated Infrastructure - ERDF
Helmholtz Zentrum MunchenGerman Research Center for Environmental Health - German Federal Ministry of Education and Research (BMBF)
State of Bavaria
German Research Foundation