PuSH - Publication Server of Helmholtz Zentrum München

Activation of PPARα by fenofibrate attenuates the effect of local heart high dose irradiation on the mouse cardiac proteome.

Biomedicines 9:1845 (2021)
Publ. Version/Full Text Research data DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Radiation-induced cardiovascular disease is associated with metabolic remodeling in the heart, mainly due to the inactivation of the transcription factor peroxisome proliferator-activated receptor alpha (PPARα), thereby inhibiting lipid metabolic enzymes. The objective of the present study was to investigate the potential protective effect of fenofibrate, a known agonist of PPARα on radiation-induced cardiac toxicity. To this end, we compared, for the first time, the cardiac proteome of fenofibrate- and placebo-treated mice 20 weeks after local heart irradiation (16 Gy) using label-free proteomics. The observations were further validated using immunoblotting, enzyme activity assays, and ELISA. The analysis showed that fenofibrate restored signalling pathways that were negatively affected by irradiation, including lipid metabolism, mitochondrial respiratory chain, redox response, tissue homeostasis, endothelial NO signalling and the inflammatory status. The results presented here indicate that PPARα activation by fenofibrate attenuates the cardiac proteome alterations induced by irradiation. These findings suggest a potential benefit of fenofibrate administration in the prevention of cardiovascular diseases, following radiation exposure.
Altmetric
Additional Metrics?
Edit extra informations Login
Publication type Article: Journal article
Document type Scientific Article
Corresponding Author
Keywords No ; Pparα ; Tgf-β ; Agonist ; Cardiac Metabolism ; Cardiovascular Disease ; Fenofibrate ; Ionizing Radiation ; Label-free Quantification ; Proteomics; Vascular Endothelial Function; Nitric-oxide Synthase; Receptor-alpha; Oxidative Stress; Breast-cancer; Long-term; Cardiovascular-disease; Lipid-metabolism; Label-free; Mortality
ISSN (print) / ISBN 2227-9059
e-ISSN 2227-9059
Journal Biomedicines
Quellenangaben Volume: 9, Issue: 12, Pages: , Article Number: 1845 Supplement: ,
Publisher MDPI
Publishing Place Basel, Switzerland
Non-patent literature Publications
Reviewing status Peer reviewed
Grants Deutsche Forschungsgemeinschaft