PuSH - Publikationsserver des Helmholtz Zentrums München

Correlation-guided Network Integration (CoNI), an R package for integrating numerical omics data that allows multiform graph representations to study molecular interaction networks.

Bioinfo. Adv. 2:vbac042 (2022)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
SUMMARY: Today's immense growth in complex biological data demands effective and flexible tools for integration, analysis and extraction of valuable insights. Here, we present CoNI, a practical R package for the unsupervised integration of numerical omics datasets. Our tool is based on partial correlations to identify putative confounding variables for a set of paired dependent variables. CoNI combines two omics datasets in an integrated, complex hypergraph-like network, represented as a weighted undirected graph, a bipartite graph, or a hypergraph structure. These network representations form a basis for multiple further analyses, such as identifying priority candidates of biological importance or comparing network structures dependent on different conditions. AVAILABILITY AND IMPLEMENTATION: The R package CoNI is available on the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/CoNI/) and GitLab (https://gitlab.com/computational-discovery-research/coni). It is distributed under the GNU General Public License (version 3). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
ISSN (print) / ISBN 2635-0041
e-ISSN 2635-0041
Quellenangaben Band: 2, Heft: 1, Seiten: , Artikelnummer: vbac042 Supplement: ,
Verlag Oxford University Press
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed