PuSH - Publikationsserver des Helmholtz Zentrums München

Shetab Boushehri, S. ; Kornivetc, A. ; Winter, D. ; Kazeminia, S. ; Essig, K.* ; Schmich, F.* ; Marr, C.

PXPermute reveals staining importance in multichannel imaging flow cytometry.

Cell Rep. Methods 4:100715 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Imaging flow cytometry (IFC) allows rapid acquisition of numerous single-cell images per second, capturing information from multiple fluorescent channels. However, the traditional process of staining cells with fluorescently labeled conjugated antibodies for IFC analysis is time consuming, expensive, and potentially harmful to cell viability. To streamline experimental workflows and reduce costs, it is crucial to identify the most relevant channels for downstream analysis. In this study, we introduce PXPermute, a user-friendly and powerful method for assessing the significance of IFC channels, particularly for cell profiling. Our approach evaluates channel importance by permuting pixel values within each channel and analyzing the resulting impact on machine learning or deep learning models. Through rigorous evaluation of three multichannel IFC image datasets, we demonstrate PXPermute's potential in accurately identifying the most informative channels, aligning with established biological knowledge. PXPermute can assist biologists with systematic channel analysis, experimental design optimization, and biomarker identification.
Impact Factor
Scopus SNIP
Altmetric
4.300
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Cp: Imaging ; Cp: Systems Biology ; Cell Profiling ; Channel Importance ; Computer Vision ; Deep Learning ; Image Flow Cytometry ; Interpretable Artificial Intelligence ; Machine Learning ; Staining Importance
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2667-2375
e-ISSN 2667-2375
Zeitschrift Cell Reports Methods
Quellenangaben Band: 4, Heft: 2, Seiten: , Artikelnummer: 100715 Supplement: ,
Verlag Elsevier
Verlagsort 50 Hampshire St, Floor 5, Cambridge, Ma 02139 Usa
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)
Institute of Computational Biology (ICB)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540007-001
G-503800-001
Förderungen Hightech Agenda Bayern
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
European Research Council (ERC) under the European Union
Helmholtz Association
F. Hoffmann-la Roche Ltd.
Scopus ID 85185811897
PubMed ID 38412831
Erfassungsdatum 2024-04-30