PuSH - Publikationsserver des Helmholtz Zentrums München

Transformers in single-cell omics: A review and new perspectives.

Nat. Methods 21, 1430-1443 (2024)
Postprint DOI PMC
Open Access Green
Recent efforts to construct reference maps of cellular phenotypes have expanded the volume and diversity of single-cell omics data, providing an unprecedented resource for studying cell properties. Despite the availability of rich datasets and their continued growth, current single-cell models are unable to fully capitalize on the information they contain. Transformers have become the architecture of choice for foundation models in other domains owing to their ability to generalize to heterogeneous, large-scale datasets. Thus, the question arises of whether transformers could set off a similar shift in the field of single-cell modeling. Here we first describe the transformer architecture and its single-cell adaptations and then present a comprehensive review of the existing applications of transformers in single-cell analysis and critically discuss their future potential for single-cell biology. By studying limitations and technical challenges, we aim to provide a structured outlook for future research directions at the intersection of machine learning and single-cell biology.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
36.100
0.000
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 1548-7091
e-ISSN 1548-7105
Zeitschrift Nature Methods
Quellenangaben Band: 21, Heft: 8, Seiten: 1430-1443 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort New York, NY
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
G-503800-004
Scopus ID 85200732113
PubMed ID 39122952
Erfassungsdatum 2024-09-30