PuSH - Publikationsserver des Helmholtz Zentrums München

Jafari, M.* ; Soerensen, J.* ; Bogdanović, R.M.* ; Dimou, L. ; Götz, M. ; Potschka, H.

Long-term genetic fate mapping of adult generated neurons in a mouse temporal lobe epilepsy model.

Neurobiol. Dis. 48, 454-463 (2012)
Verlagsversion Volltext DOI PMC
Open Access Gold
In the epileptic brain, seizures can increase hippocampal neurogenesis, while opposingly seizure-associated brain pathology has been shown to detrimentally affect neurogenesis. The long-term impact of recurrent seizures on the number of new neurons as well as their relative contribution to the granule cell layer remains an open question. Therefore we analyzed neuron addition based on genetic fate mapping in a chronic model of epilepsy comparing non-kindled animals and kindled animals having at least one generalized seizure with and without further seizures. The number of all new granule cells added to the dentate gyrus following the onset of kindling was significantly increased (7.0-8.9 fold) in kindled groups. The hyperexcitable kindled state and a prior seizure history proved to be sufficient to cause a pronounced long-term net effect on neuron addition. An ongoing continuous occurrence of seizures did not further increase the number of new granule cells in the long-term. In contrast, a correlation was found between the cumulative duration of seizures and neuron addition following a kindled state. In addition, the overall number of seizures influenced the relative portion of new cells among all granule cells. Non-kindled animals showed 1.6% of new granule cells among all granular cells by the end of the experiment. This portion reached 5.7% in the animals which experienced either 10 or 22 seizures. A percentage of 8.4% new cells were determined in the group receiving 46 seizures which is a significant increase in comparison to the control group. In conclusion, permanent genetic fate mapping analysis demonstrated that recurrent seizures result in a lasting change in the makeup of the granule cell layer with alterations in the relative contribution of newborn neurons to the granule cell network. Interestingly, the formation of a hyperexcitable kindled network even without recent seizure activity can result in pronounced long-term alterations in the absolute number of new granule cells. However, seizure density also seems to play a critical role with more frequent seizures resulting in increased fractions of new neurons.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.403
1.292
8
9
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter GLAST; CreERT2; eGFP; Adult neurogenesis; Neuron integration
Sprache englisch
Veröffentlichungsjahr 2012
HGF-Berichtsjahr 2012
ISSN (print) / ISBN 0969-9961
e-ISSN 1095-953X
Quellenangaben Band: 48, Heft: 3, Seiten: 454-463 Artikelnummer: , Supplement: ,
Verlag Elsevier
Begutachtungsstatus Peer reviewed
POF Topic(s) 30204 - Cell Programming and Repair
Forschungsfeld(er) Stem Cell and Neuroscience
PSP-Element(e) G-500800-001
PubMed ID 22750527
Scopus ID 84865061142
Erfassungsdatum 2012-10-31