PuSH - Publikationsserver des Helmholtz Zentrums München

Varnek, A.* ; Gaudin, C.* ; Marcou, G.* ; Baskin, I.* ; Pandey, A.K. ; Tetko, I.V.

Inductive transfer of knowledge: Application of multi-task learning and feature net approaches to model tissue-air partition coefficients.

J. Chem. Inf. Model. 49, 133-144 (2009)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Two inductive knowledge transfer approaches - multitask learning (MTL) and Feature Net (FN) - have been used to build predictive neural networks (ASNN) and PLS models for I I types of tissue-air partition coefficients (TAPC). Unlike conventional single-task learning (STL) modeling focused only on a single target property without any relations to other properties, in the framework of inductive transfer approach, the individual models are viewed as nodes in the network of interrelated models built in parallel (MTL) or sequentially (FN). It has been demonstrated that MTL and FN techniques are extremely useful in structure-property modeling on small and structurally diverse data sets, when conventional STL modeling is unable to produce any predictive model. The predictive STL individual models were obtained for 4 out of I I TAPC, whereas application of inductive knowledge transfer techniques resulted in models for 9 TAPC. Differences in prediction performances of the models as a function of the machine-learning method, and of the number of properties simultaneously involved in the learning, has been discussed.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.643
1.472
29
61
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter associative neural networks; structure-property; combinatorial library; cross-validation; data sets; prediction; database; bias; classification; lipophilicity
Sprache
Veröffentlichungsjahr 2009
HGF-Berichtsjahr 2009
ISSN (print) / ISBN 0021-9576
e-ISSN 1520-5142
Quellenangaben Band: 49, Heft: 1, Seiten: 133-144 Artikelnummer: , Supplement: ,
Verlag American Chemical Society (ACS)
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503700-001
Scopus ID 61949280507
PubMed ID 19125628
Erfassungsdatum 2009-12-31