Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics.
Mol. Nutr. Food Res. 53, 1357-1365 (2009)
Identifying the biochemical basis of microbial phenotypes is a main objective of comparative genomics. Here we present a novel method using multivariate machine learning techniques for comparing automatically derived metabolic reconstructions of sequenced genomes on a large scale. Applying our method to 266 genomes directly led to testable hypotheses such as the link between the potential of microorganisms to cause periodontal disease and their ability to degrade histidine, a link also supported by clinical studies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
3.308
1.333
32
47
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Acylcarnintine; Coffee; Metabolomics; MS/MS; Sphingomyelin
Sprache
englisch
Veröffentlichungsjahr
2009
HGF-Berichtsjahr
2009
ISSN (print) / ISBN
1613-4125
e-ISSN
1613-4133
Zeitschrift
Molecular Nutrition and Food Research
Quellenangaben
Band: 53,
Heft: 11,
Seiten: 1357-1365
Verlag
Wiley
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Bioinformatics and Systems Biology (IBIS)
Molekulare Endokrinologie und Metabolismus (MEM)
Institute of Epidemiology (EPI)
Molekulare Endokrinologie und Metabolismus (MEM)
Institute of Epidemiology (EPI)
POF Topic(s)
30505 - New Technologies for Biomedical Discoveries
30201 - Metabolic Health
30201 - Metabolic Health
Forschungsfeld(er)
Enabling and Novel Technologies
Genetics and Epidemiology
Genetics and Epidemiology
PSP-Element(e)
G-503700-001
G-505600-001
G-503900-004
G-505600-001
G-503900-004
PubMed ID
19810022
Scopus ID
70449591808
Erfassungsdatum
2009-12-31