PuSH - Publikationsserver des Helmholtz Zentrums München

Artamonova, I.I. ; Frishman, G. ; Gelfand, M.S.* ; Frishman, D.

Mining sequence annotation databanks for association patterns.

Bioinformatics 21, 3, 49-57 (2005)
Verlagsversion Volltext DOI PMC
Open Access Gold
MOTIVATION: Millions of protein sequences currently being deposited to sequence databanks will never be annotated manually. Similarity-based annotation generated by automatic software pipelines unavoidably contains spurious assignments due to the imperfection of bioinformatics methods. Examples of such annotation errors include over- and underpredictions caused by the use of fixed recognition thresholds and incorrect annotations caused by transitivity based information transfer to unrelated proteins or transfer of errors already accumulated in databases. One of the most difficult and timely challenges in bioinformatics is the development of intelligent systems aimed at improving the quality of automatically generated annotation. A possible approach to this problem is to detect anomalies in annotation items based on association rule mining. RESULTS: We present the first large-scale analysis of association rules derived from two large protein annotation databases-Swiss-Prot and PEDANT-and reveal novel, previously unknown tendencies of rule strength distributions. Most of the rules are either very strong or very weak, with rules in the medium strength range being relatively infrequent. Based on dynamics of error correction in subsequent Swiss-Prot releases and on our own manual analysis we demonstrate that exceptions from strong rules are, indeed, significantly enriched in annotation errors and can be used to automatically flag them. We identify different strength dependencies of rules derived from different fields in Swiss-Prot. A compositional breakdown of association rules generated from PEDANT in terms of their constituent items indicates that most of the errors that can be corrected are related to gene functional roles. Swiss-Prot errors are usually caused by under-annotation owing to its conservative approach, whereas automatically generated PEDANT annotation suffers from over-annotation. AVAILABILITY: All data generated in this study are available for download and browsing at http://pedant.gsf.de/ARIA/index.htm.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.742
0.000
24
30
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter COMPLETE GENOME SEQUENCE; FUNCTIONAL ANNOTATION; AUTOMATED ANNOTATION; STRUCTURAL GENOMICS; PROTEIN ANNOTATION; ESCHERICHIA-COLI; SCOP DATABASE; SYSTEM; PREDICTION; CLASSIFICATION
Sprache englisch
Veröffentlichungsjahr 2005
HGF-Berichtsjahr 2005
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 21, Heft: 3 Seiten: 49-57, Artikelnummer: , Supplement: 3
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503700-001
PubMed ID 16306393
Scopus ID 28944442644
Erfassungsdatum 2005-12-31