Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
    Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter.
        
        Environ. Sci. Technol. 34, 4600-4605 (2000)
    
    
    
				It has been assessed the influence of four organic amendments (OA) consisting of two commercial humic amendments (liquid LF and solid SF) from olive-mill wastes, a solid urban waste (SUW), and a sewage sludge (SS) on the sorption properties and leaching potential of simazine and 2,4-D. A sandy soil (TR) and a sandy-clay soil with a relatively high montmorillonite content (A) were treated with the diverse OA. Dissolved organic matter (DOM) was extracted from the amendments, the soils, and the amended soils and studied by fluorescence spectroscopy. A humification index (HIX) was calculated from the fluorescence data. Sorption was determined with the batch technique. Spectroscopical studies revealed that the DOM of the LF differs from the other OA by having a very low ability to absorb and to fluoresce and by its very low HIX values, which indicates that the LF contains large amounts of nonhumified material and consists of small molecules. On the other hand, the SF amendment contains the highest amounts of highly humified material and a large number of carboxylic groups. Amended soils sorbed simazine and 2,4-D to a greater extent than the untreated soils, except in the case of simazine sorption in the LF amended soil A, which had a lower simazine sorption than the original soil. The small molecules of DOM in the LF compete with simazine for montmorillonite sorption sites in soil A. This is not the case for 2,4-D, since this herbicide does not sorb on montmorillonite. In the case of the soil TR, with a lower montmorillonite content, there is no competition between simazine and the LF molecules for sorption sites. Soils amended with the highly humified SF were the best sorbents for simazine but not for 2,4-D, which can be attributed to repulsion between negatively charged 2,4-D molecules and COO- groups, which are more abundant in SF.
			
			
		Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Times Cited
Scopus
Cited By
					
					Cited By
Altmetric
					
				0.000
					0.000
					78
					79
					
					
				Anmerkungen
				
					
						 
						
					
				
			
				
			
				Besondere Publikation
				
					
						 
					
				
			
			
			
				Auf Hompepage verbergern
				
					
						 
					
				
			
			
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
     
    
    
        Schlagwörter
        HUMIC SUBSTANCES; SOIL COLLOIDS; AMENDED SOILS; ATRAZINE; FLUORESCENCE; DESORPTION; MOVEMENT; SIMAZINE; WATER; BEHAVIOR
    
 
     
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2000
    
 
     
    
        HGF-Berichtsjahr
        0
    
 
    
    
        ISSN (print) / ISBN
        0013-936X
    
 
    
        e-ISSN
        1520-5851
    
 
     
     
     
	     
	 
	 
    
        Zeitschrift
        Environmental Science & Technology
    
 
		
    
        Quellenangaben
        
	    Band: 34,  
	    Heft: 21,  
	    Seiten: 4600-4605 
	    
	    
	
    
 
  
         
        
            Verlag
            ACS
        
 
        
            Verlagsort
            Washington, DC
        
 
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of Soil Ecology (IBOE)
    
 
     
    
        Forschungsfeld(er)
        Environmental Sciences
    
 
    
        PSP-Element(e)
        FE 74491
    
 
     
     	
    
    
        WOS ID
        WOS:000165120800042
    
    
        Scopus ID
        0034329497
    
    
        Erfassungsdatum
        2000-12-31