Siegert, S.* ; Yu, Z. ; Wang-Sattler, R. ; Illig, T. ; Adamski, J. ; Hampe, J.* ; Nikolaus, S.* ; Schreiber, S.* ; Krawczak, M.* ; Nothnagel, M.* ; Nöthlings, U.*
     
 
    
        
Diagnosing fatty liver disease: A comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers.
    
    
        
    
    
        
        PLoS ONE 8:e76813 (2013)
    
    
    
		
		
			
				BACKGROUND: To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted. AIM: We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes. METHODS: The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-matched controls for whom the serum concentration was measured of 138 different metabolites, including acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins. Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement (IDI) and by way of cross-validation (CV). RESULTS: Use of metabolic markers for predicting FLD showed the best performance among all considered types of markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for predicting FLD. CONCLUSION: We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD over that of models based solely upon phenotypes and conventional biomarkers.  
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Whole-genome Association ; Insulin-resistance ; Nonalcoholic Steatohepatitis ; General-population ; Lipid-metabolism ; Index ; Epidemiology ; Genetics ; Risk ; Prediction
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2013
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2013
    
 
    
    
        ISSN (print) / ISBN
        1932-6203
    
 
    
        e-ISSN
        
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 8,  
	    Heft: 10,  
	    Seiten: ,  
	    Artikelnummer: e76813 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Public Library of Science (PLoS)
        
 
        
            Verlagsort
            Lawrence, Kan.
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
30201 - Metabolic Health
    
 
    
        Forschungsfeld(er)
        Genetics and Epidemiology
    
 
    
        PSP-Element(e)
        G-504200-003
G-505600-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2013-10-21