PuSH - Publikationsserver des Helmholtz Zentrums München

An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy.

BMC Bioinformatics 14:297 (2013)
Verlagsversion Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Background;In recent years, high-throughput microscopy has emerged as a powerful tool to analyze cellular dynamicsin an unprecedentedly high resolved manner. The amount of data that is generated, for examplein long-term time-lapse microscopy experiments, requires automated methods for processing andanalysis. Available software frameworks are well suited for high-throughput processing of fluorescenceimages, but they often do not perform well on bright field image data that varies considerablybetween laboratories, setups, and even single experiments.Results;In this contribution, we present a fully automated image processing pipeline that is able to robustly segment and analyze cells with ellipsoid morphology from bright field microscopy in a highthroughput, yet time efficient manner. The pipeline comprises two steps: (i) Image acquisition is adjusted to obtain optimal bright field image quality for automatic processing. (ii) A concatenation of fast performing image processing algorithms robustly identifies single cells in each image. We applied the method to a time-lapse movie consisting of ~315,000 images of differentiating hematopoietic stem cells over 6 days. We evaluated the accuracy of our method by comparing the number of identified cells with manual counts. Our method is able to segment images with varying cell density and different cell types without parameter adjustment and clearly outperforms a standard approach. By computing population doubling times, we were able to identify three growth phases in the stem cell population throughout the whole movie, and validated our result with cell cycle times from single cell tracking.Conclusions;Our method allows fully automated processing and analysis of high-throughput bright field microscopydata. The robustness of cell detection and fast computation time will support the analysisof high-content screening experiments, on-line analysis of time-lapse experiments as well as developmentof methods to automatically track single-cell genealogies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.024
1.078
76
91
Tags
Icb_BioSysNet Icb_qscd
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Hematopoietic Stem-cell ; Stable Extremal Regions ; Segmentation ; Distance ; Screens
Sprache englisch
Veröffentlichungsjahr 2013
HGF-Berichtsjahr 2013
ISSN (print) / ISBN 1471-2105
e-ISSN 1471-2105
Zeitschrift BMC Bioinformatics
Quellenangaben Band: 14, Heft: 1, Seiten: , Artikelnummer: 297 Supplement: ,
Verlag BioMed Central
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
Forschungsfeld(er) Enabling and Novel Technologies
Stem Cell and Neuroscience
PSP-Element(e) G-503800-001
G-501200-001
PubMed ID 24090363
Scopus ID 84884929912
Erfassungsdatum 2013-10-28