PuSH - Publikationsserver des Helmholtz Zentrums München

Friedel, C.C.* ; Krumsiek, J.* ; Zimmer, R.*

Bootstrapping the interactome: Unsupervised identification of protein complexes in yeast.

J. Comput. Biol. 16, 971-987 (2009)
Verlagsversion Volltext DOI PMC
Closed
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Protein interactions and complexes are important components of biological systems. Recently, two genome-wide applications of tandem affinity purification (TAP) in yeast have increased significantly the available information on interactions in complexes. Several approaches have been developed to predict protein complexes from these measurements, which generally depend heavily on additional training data in the form of known complexes. In this article, we present an unsupervised algorithm for the identification of protein complexes which is independent of the availability of such additional complex information. Based on a Bootstrap approach, we calculate intuitive confidence scores for interactions more accurate than all other published scoring methods and predict complexes with the same quality as the best supervised predictions. Although there are considerable differences between the Bootstrap and the best published predictions, the set of consistently identified complexes is more than four times as large as for complexes derived from one data set only. Our results illustrate that meaningful and reliable complexes can be determined from the purification experiments alone. As a consequence, the approach presented in this article is easily applicable to large-scale TAP experiments for any species even if few complexes are already known.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
0.000
1.070
31
62
Tags
Icb_extern Icb_metabo
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2009
HGF-Berichtsjahr 0
ISSN (print) / ISBN 1066-5277
e-ISSN 1557-8666
Quellenangaben Band: 16, Heft: 8, Seiten: 971-987 Artikelnummer: , Supplement: ,
Verlag Mary Ann Liebert
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
PubMed ID 19630542
Erfassungsdatum 2009-12-13