PuSH - Publikationsserver des Helmholtz Zentrums München

Pennells, L.* ; Kaptoge, S.* ; White, I.R.* ; Thompson, S.G.* ; Wood, A.M.* ; Emerging Risk Factors Collaboration (Meisinger, C.)

Assessing risk prediction models using individual participant data from multiple studies.

Am. J. Epidemiol. 179, 621-632 (2014)
Verlagsversion Volltext DOI PMC
Closed
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Individual participant time-to-event data from multiple prospective epidemiologic studies enable detailed investigation into the predictive ability of risk models. Here we address the challenges in appropriately combining such information across studies. Methods are exemplified by analyses of log C-reactive protein and conventional risk factors for coronary heart disease in the Emerging Risk Factors Collaboration, a collation of individual data from multiple prospective studies with an average follow-up duration of 9.8 years (dates varied). We derive risk prediction models using Cox proportional hazards regression analysis stratified by study and obtain estimates of risk discrimination, Harrell's concordance index, and Royston's discrimination measure within each study; we then combine the estimates across studies using a weighted meta-analysis. Various weighting approaches are compared and lead us to recommend using the number of events in each study. We also discuss the calculation of measures of reclassification for multiple studies. We further show that comparison of differences in predictive ability across subgroups should be based only on within-study information and that combining measures of risk discrimination from case-control studies and prospective studies is problematic. The concordance index and discrimination measure gave qualitatively similar results throughout. While the concordance index was very heterogeneous between studies, principally because of differing age ranges, the increments in the concordance index from adding log C-reactive protein to conventional risk factors were more homogeneous.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.975
2.090
34
37
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter C index; D measure; coronary heart disease; individual participant data; inverse variance; meta-analysis; risk prediction; weighting; Cardiovascular-disease Prediction; To-event Analysis; Time-scale; Regression-models; Cancer; Metaanalysis; Choice; Ability; Cohort; Blood
Sprache englisch
Veröffentlichungsjahr 2014
HGF-Berichtsjahr 2014
ISSN (print) / ISBN 0002-9262
e-ISSN 1476-6256
Quellenangaben Band: 179, Heft: 5, Seiten: 621-632 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Cary
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504000-006
PubMed ID 24366051
Erfassungsdatum 2014-01-27