PuSH - Publikationsserver des Helmholtz Zentrums München

Andor, N. ; Harness, J.V.* ; Müller, S.* ; Mewes, H.-W. ; Petritsch, C.*

EXPANDS: Expanding ploidy and allele frequency on nested subpopulations.

Bioinformatics 30, 50-60 (2014)
Verlagsversion Volltext DOI PMC
Open Access Gold
Motivation: Several cancer types consist of multiple genetically and phenotypically distinct subpopulations. The underlying mechanism for this intra-tumoral heterogeneity can be explained by the clonal evolution model, whereby growth advantageous mutations cause the expansion of cancer cell subclones. The recurrent phenotype of many cancers may be a consequence of these coexisting subpopulations responding unequally to therapies. Methods to computationally infer tumor evolution and subpopulation diversity are emerging and they hold the promise to improve the understanding of genetic and molecular determinants of recurrence. Results: To address cellular subpopulation dynamics within human tumors, we developed a bioinformatic method, EXPANDS. It estimates the proportion of cells harboring specific mutations in a tumor. By modeling cellular frequencies as probability distributions, EXPANDS predicts mutations that accumulate in a cell before its clonal expansion. We assessed the performance of EXPANDS on one whole genome sequenced breast cancer and performed SP analyses on 118 glioblastoma multiforme samples obtained from TCGA. Our results inform about the extent of subclonal diversity in primary glioblastoma, subpopulation dynamics during recurrence and provide a set of candidate genes mutated in the most well-adapted subpopulations. In summary, EXPANDS predicts tumor purity and subclonal composition from sequencing data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.621
1.708
76
92
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Comparative Genomic Hybridization; Tyrosine Kinase Genes; Tumor Heterogeneity; Breast Cancers; Glioblastoma; Evolution; Amplification; Growth; Egfr
Sprache englisch
Veröffentlichungsjahr 2014
HGF-Berichtsjahr 2014
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 30, Heft: 1, Seiten: 50-60 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503700-001
PubMed ID 24177718
Scopus ID 84891370404
Erfassungsdatum 2014-01-29