Pathway focused protein profiling indicates differential function for IL-1B,-18 and VEGF during initiation and resolution of lung inflammation evoked by carbon nanoparticle exposure in mice.
Part. Fibre Toxicol. 6:31 (2009)
Background: Carbonaceous nanoparticles possess an emerging source of human exposure due to the massive release of combustion products and the ongoing revolution in nanotechnology. Pulmonary inflammation caused by deposited nanoparticles is central for their adverse health effects. Epidemiological studies suggest that individuals with favourable lung physiology are at lower risk for particulate matter associated respiratory diseases probably due to efficient control of inflammation and repair process. Therefore we selected a mouse strain C3H/HeJ (C3) with robust lung physiology and exposed it to moderately toxic carbon nanoparticles (CNP) to study the elicited pulmonary inflammation and its resolution. Methods: 5 mu g, 20 mu g and 50 mu g CNP were intratracheally (i.t.) instilled in C3 mice to identify the optimal dose for subsequent time course studies. Pulmonary inflammation was assessed using histology, bronchoalveolar lavage (BAL) analysis and by a panel of 62 protein markers. Results: 1 day after instillation of CNP, C3 mice exhibited a typical dose response, with the lowest dose (5 mu g) representing the 'no effect level' as reflected by polymorphonuclear leucocyte (PMN), and BAL/lung concentrations of pro-inflammatory proteins. Histological analysis and BAL-protein concentration did not reveal any evidence of tissue injury in 20 mu g CNP instilled animals. Accordingly time course assessment of the inflammatory response was performed after 3 and 7 days with this dose (20 mu g). Compared to day 1, BAL PMN counts were significantly decreased at day 3 and completely returned to normal by day 7. We have identified protein markers related to the acute response and also to the time dependent response in lung and BAL. After complete resolution of PMN influx on day 7, we detected elevated concentrations of 20 markers that included IL1B, IL18, FGF2, EDN1, and VEGF in lung and/or BAL. Biological pathway analysis revealed these factors to be involved in a closely regulated molecular cascade with IL1B/IL18 as upstream and FGF2/EDN1/VEGF as downstream molecules. Conclusion: Considering the role of VEGF, FGF2 and EDN1 in lung development and morphogenesis together with the lack of any evident tissue damage we suggest a protective/homeostatic machinery to be associated in lungs of stable organisms to counter the CNP challenge as a precautionary measure.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
ENDOTHELIAL GROWTH-FACTOR; COMBUSTION-DERIVED NANOPARTICLES; RESPIRATORY-DISTRESS-SYNDROME; INSOLUBLE IRIDIUM PARTICLES; PARTICULATE AIR-POLLUTION; COLONY-STIMULATING FACTOR; TUMOR-NECROSIS-FACTOR; SMOOTH-MUSCLE-CELLS; EPITHELIAL-CELLS; SURFACE-AREA
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2009
Prepublished im Jahr
HGF-Berichtsjahr
0
ISSN (print) / ISBN
1743-8977
e-ISSN
1743-8977
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 6,
Heft: ,
Seiten: ,
Artikelnummer: 31
Supplement: ,
Reihe
Verlag
Biomed Central Ltd
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
30201 - Metabolic Health
Forschungsfeld(er)
Lung Research
Genetics and Epidemiology
PSP-Element(e)
G-505000-001
G-500600-004
G-505000-004
Förderungen
Copyright
Erfassungsdatum
2009-12-31