PuSH - Publikationsserver des Helmholtz Zentrums München

Zhang, Z.* ; Porter, J.* ; Tripsianes, K.* ; Lange, O.F.

Robust and highly accurate automatic NOESY assignment and structure determination with Rosetta.

J. Biomol. NMR 59, 135-145 (2014)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
We have developed a novel and robust approach for automatic and unsupervised simultaneous nuclear Overhauser effect (NOE) assignment and structure determination within the CS-Rosetta framework. Starting from unassigned peak lists and chemical shift assignments, autoNOE-Rosetta determines NOE cross-peak assignments and generates structural models. The approach tolerates incomplete and raw NOE peak lists as well as incomplete or partially incorrect chemical shift assignments, and its performance has been tested on 50 protein targets ranging from 50 to 200 residues in size. We find a significantly improved performance compared to established programs, particularly for larger proteins and for NOE data obtained on perdeuterated protein samples. X-ray crystallographic structures allowed comparison of Rosetta and conventional, PDB-deposited, NMR models in 20 of 50 test cases. The unsupervised autoNOE-Rosetta models were often of significantly higher accuracy than the corresponding expert-supervised NMR models deposited in the PDB. We also tested the method with unrefined peak lists and found that performance was nearly as good as for refined peak lists. Finally, demonstrating our method's remarkable robustness against problematic input data, we provided correct models for an incorrect PDB-deposited NMR solution structure.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.305
1.018
20
22
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Automatic Data Analysis ; Nuclear Magnetic Resonance ; Structure Determination; Nmr Structure Determination; Torsion Angle Dynamics; Protein Structures; Cs-rosetta; Algorithm; Program; Information; Quality; Dyana
Sprache englisch
Veröffentlichungsjahr 2014
HGF-Berichtsjahr 2014
ISSN (print) / ISBN 0925-2738
e-ISSN 1573-5001
Quellenangaben Band: 59, Heft: 3, Seiten: 135-145 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Dordrecht
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503000-001
PubMed ID 24845473
Scopus ID 84904049400
Scopus ID 84901541022
Erfassungsdatum 2014-06-10