PuSH - Publikationsserver des Helmholtz Zentrums München

Bayesian blind source separation for data with network structure.

J. Comput. Biol. 21, 855-865 (2014)
Verlagsversion DOI PMC
Closed
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
In biology, more and more information about the interactions in regulatory systems becomes accessible, and this often leads to prior knowledge for recent data interpretations. In this work we focus on multivariate signaling data, where the structure of the data is induced by a known regulatory network. To extract signals of interest we assume a blind source separation (BSS) model, and we capture the structure of the source signals in terms of a Bayesian network. To keep the parameter space small, we consider stationary signals, and we introduce the new algorithm emGrade, where model parameters and source signals are estimated using expectation maximization. For network data, we find an improved estimation performance compared to other BSS algorithms, and the flexible Bayesian modeling enables us to deal with repeated and missing observation values. The main advantage of our method is the statistically interpretable likelihood, and we can use model selection criteria to determine the (in general unknown) number of source signals or decide between different given networks. In simulations we demonstrate the recovery of the source signals dependent on the graph structure and the dimensionality of the data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
1.670
0.819
3
3
Tags
Icb_biostatistics Icb_InKoMBio_CellComm Icb_Latent Causes Icb_ML
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Bayesian Network ; Expectation Maximization ; Linear Mixing Model ; Model Selection ; Stationary Signals; Model
Sprache englisch
Veröffentlichungsjahr 2014
HGF-Berichtsjahr 2014
ISSN (print) / ISBN 1066-5277
e-ISSN 1557-8666
Quellenangaben Band: 21, Heft: 11, Seiten: 855-865 Artikelnummer: , Supplement: ,
Verlag Mary Ann Liebert
Verlagsort New Rochelle
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
PubMed ID 25302766
Erfassungsdatum 2014-10-12