Three-dimensional tracking of lesion profile during laser surgery based on shock wave detection.
Proc. SPIE 8943:89431N (2014)
Lack of sensory feedback during laser surgery prevents surgeons from keeping track of the exact lesion profile and cutting depth. As a result, duration and complexity of the treatments are significantly increased. In this study we propose a new method for enabling three-dimensional tracking of the exact lesion profile, based on detection of shock waves emanating from the ablated tissue and subsequent reconstruction of the incision location using time-of-flight data obtained from multiple acoustic detectors. Ablation was performed in fresh bovine tissue samples using a Q-switched Nd-YAG laser, delivering 8 ns duration 150mJ pulses at a wavelength of 1064nm and repetition rate of 5Hz. The beam was focused by a 50mm lens on the tissue surface, which resulted in a deep cut of up to 9mm depth. The generated shock waves were detected using a spherical matrix ultrasonic array. The exact cutting profile was subsequently rendered by reconstructing the origin of shockwaves detected during the entire procedure. Different combinations of the detector positions were considered with respect to the resulting reconstruction quality. It was observed that, by utilizing at least 12 detection elements, the lesion profile could be characterized with high accuracy in all three dimensions, which was confirmed by histological evaluations. The proposed method holds promise for delivering highly precise and accurate real-time feedback during laser surgeries.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Cutting Depth ; Cutting Efficiency ; Laser Ablation ; Laser Surgery ; Lesion Profile ; Optoacoustic ; Shockwave
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2014
Prepublished im Jahr
HGF-Berichtsjahr
2014
ISSN (print) / ISBN
0277-786X
e-ISSN
1996-756X
ISBN
Bandtitel
Konferenztitel
Photons Plus Ultrasound: Imaging and Sensing 2014
Konferzenzdatum
2-5 February 2014
Konferenzort
San Francisco, CA; United States
Konferenzband
Quellenangaben
Band: 8943,
Heft: ,
Seiten: ,
Artikelnummer: 89431N
Supplement: ,
Reihe
Verlag
SPIE
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505590-001
Förderungen
Copyright
Erfassungsdatum
2014-11-05