Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment.
Blood 105, 1036-1043 (2005)
Angiogenesis and inflammation are closely related biologic processes in wound healing and the responses to vascular injury as well as in cardiovascular diseases; however, the molecular connections are poorly defined. In particular, it is yet unclear whether endogenous factors can regulate both angiogenesis and inflammation. Here, we show that the endogenous angiogenesis inhibitor, angiostatin (containing kringle domains 1-4 of plasminogen), serves an anti-inflammatory role, since the kringles 1-3 and its kringle 4 directly interact with leukocyte beta1- and beta2-integrins, respectively. In particular, a specific interaction between kringle 4 and alphaMbeta2-integrin (Mac-1) but not leukocyte function antigen 1 (LFA-1) was identified. Angiostatin thereby inhibited beta1- and beta2-integrin-mediated adhesion of leukocytes to extracellular matrix proteins and the endothelium as well as their transmigration through the endothelium in vitro. Moreover, angiostatin blocked the peritonitis-induced neutrophil emigration in vivo. In addition, through its interaction with Mac-1, angiostatin reduced activation of the proinflammatory transcription factor nuclear factor kappaB (NFkappaB), as well as the NFkappaB-related expression of tissue factor, a potent initiator of hemostasis following vascular injury. Finally, angiostatin forms were generated in vivo following skin injury/inflammation and were detectable during the following entire period of wound healing peaking at the terminal phase of the healing process. Taken together, over and above inhibition of neovascularization, angiostatin was identified as an antiadhesive/anti-inflammatory substance. These observations could provide the basis for new therapeutic applications of angiostatin to target chronic inflammatory processes in different pathologic situations.
Impact Factor
Scopus SNIP
Altmetric
0.000
0.000
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Sprache
englisch
Veröffentlichungsjahr
2005
HGF-Berichtsjahr
0
ISSN (print) / ISBN
0006-4971
e-ISSN
1528-0020
Zeitschrift
Blood
Quellenangaben
Band: 105,
Heft: 3,
Seiten: 1036-1043
Verlag
American Society of Hematology
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Pancreatic Islet Research (IPI)
PubMed ID
15383457
Erfassungsdatum
2005-12-31