möglich sobald  bei der ZB eingereicht worden ist.
		
    Regulation of leukocyte recruitment by polypeptides derived from high molecular weight kininogen.
        
        FASEB J. 15, 2365-2376 (2001)
    
    
    
				Proteolytic cleavage of single-chain, high molecular weight kininogen (HK) by kallikrein releases the short-lived vasodilator bradykinin and leaves behind a two-chain, high molecular weight kininogen (HKa) reported to bind to the beta2-integrin Mac-1 (CR3, CD11b/CD18, alphaMbeta2) on neutrophils and exert antiadhesive properties by binding to the urokinase receptor (uPAR) and vitronectin. We define the molecular mechanisms for the antiadhesive effects of HK related to disruption of beta2-integrin-mediated cellular interactions in vitro and in vivo. In a purified system, HK and HKa inhibited the binding of soluble fibrinogen and ICAM-1 to immobilized Mac-1, but not the binding of ICAM-1 to immobilized LFA-1 (CD11a/CD18, alphaLbeta2). This inhibitory effect could be attributed to HK domain 5 and to a lesser degree to HK domain 3, consistent with the requirement of both domains for binding to Mac-1. Accordingly, HK, HKa, and domain 5 inhibited the adhesion of Mac-1 but not LFA-1-transfected K562 human erythroleukemic cells to ICAM-1. Moreover, adhesion of human monocytic cells to fibrinogen and to human endothelial cells was blocked by HK, HKa, and domain 5. By using peptides derived from HK domain 5, the sequences including amino acids H475-G497 (and to a lesser extent, G440-H455) were identified as responsible for the antiadhesive effect, which was independent of uPAR. Finally, administration of domain 5 into mice, followed by induction of thioglycollate-provoked peritonitis, decreased the recruitment of neutrophils by approximately 70% in this model of acute inflammation. Taken together, HKa (and particularly domain 5) specifically interacts with Mac-1 but not with LFA-1, thereby blocking Mac-1-dependent leukocyte adhesion to fibrinogen and endothelial cells in vitro and in vivo and serving as a novel endogenous regulator of leukocyte recruitment into the inflamed tissue.
			
			
		Impact Factor
					Scopus SNIP
					
					Scopus
Cited By
					
					Cited By
Altmetric
					
				0.000
					0.000
					
					54
					
					
				Anmerkungen
				
					
						 
						
					
				
			
				
			
				Besondere Publikation
				
					
						 
					
				
			
			
			
				Auf Hompepage verbergern
				
					
						 
					
				
			
			
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
     
    
     
     
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2001
    
 
     
    
        HGF-Berichtsjahr
        0
    
 
    
    
        ISSN (print) / ISBN
        0892-6638
    
 
    
        e-ISSN
        1530-6860
    
 
     
     
     
	     
	 
	 
    
        Zeitschrift
        FASEB Journal
    
 
		
    
        Quellenangaben
        
	    Band: 15,  
	    Heft: 13,  
	    Seiten: 2365-2376 
	    
	    
	
    
 
  
         
        
            Verlag
            Wiley
        
 
        
            Verlagsort
            Bethesda, Md.
        
 
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute of Pancreatic Islet Research (IPI)
    
 
     
     
     
     
     	
    
        PubMed ID
        11689462
    
    
    
        Erfassungsdatum
        2001-12-31