PuSH - Publikationsserver des Helmholtz Zentrums München

Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data.

Bioinformatics 31, i89-i96 (2015)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
MOTIVATION: High-dimensional single-cell snapshot data are becoming widespread in the systems biology community, as a mean to understand biological processes at the cellular level. However, as temporal information is lost with such data, mathematical models have been limited to capture only static features of the underlying cellular mechanisms. RESULTS: Here, we present a modular framework which allows to recover the temporal behaviour from single-cell snapshot data and reverse engineer the dynamics of gene expression. The framework combines a dimensionality reduction method with a cell time-ordering algorithm to generate pseudo time-series observations. These are in turn used to learn transcriptional ODE models and do model selection on structural network features. We apply it on synthetic data and then on real hematopoietic stem cells data, to reconstruct gene expression dynamics during differentiation pathways and infer the structure of a key gene regulatory network. AVAILABILITY AND IMPLEMENTATION: C++ and Matlab code available at https://www.helmholtz-muenchen.de/fileadmin/ICB/software/inferenceSnapshot.zip. CONTACT: fabian.theis@helmholtz-muenchen.deSupplementary information: Supplementary data are available at Bioinformatics online.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.981
1.843
76
88
Tags
Icb_Latent Causes Icb_rene
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Escherichia-coli; Expression; Network; Stem; Leukemia; Biology; Systems; Models
Sprache englisch
Veröffentlichungsjahr 2015
HGF-Berichtsjahr 2015
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 31, Heft: 12, Seiten: i89-i96 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
PubMed ID 26072513
Scopus ID 84931084251
Erfassungsdatum 2015-06-16