A novel and fast method for cluster analysis of DCE-MR image series of breast tumors.
Proc. SPIE 7626:76260R (2010)
A novel approach is introduced for clustering tumor regions with similar signal-time series measured by dynamic contrast-enhanced (DCE) MRI to segment the tumor area in breast cancer. Each voxel of the DCE-MRI dataset is characterized by a signal-time curve. The clustering process uses two describer values for each pixel. The first value is L2-norm of each time series. The second value r is calculated as sum of differences between each pair of S(n-i) and S(i) for i = {0...n/2} where S is the intensity and n the number of values in a time series. We call r reverse value of a time series. Each time series is considered as a vector in an n-dimensional space and the L2-norm and reverse value of a vector are used as similarity measures. The curves with similar L2-norms and similar reverse values are clustered together. The method is tested on breast cancer DCE-MRI datasets with N = 256 x 256 spatial resolution and n = 128 temporal resolution. The quality of each cluster is described through the variance of Euclidean distances of the vectors to the mean vector of the corresponding cluster. The combination of both similarity measures improves the segmentation compared to using each measure alone.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Schlagwörter
DCE-MRI; Time Series; Segmentation; Clustering; Lp-norm
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2010
Prepublished im Jahr
HGF-Berichtsjahr
0
ISSN (print) / ISBN
0277-786X
e-ISSN
1996-756X
ISBN
Bandtitel
Konferenztitel
SPIE Medical Imaging
Konferzenzdatum
13-18 February 2010
Konferenzort
San Diego, USA
Konferenzband
Quellenangaben
Band: 7626,
Heft: ,
Seiten: ,
Artikelnummer: 76260R
Supplement: ,
Reihe
Verlag
SPIE
Verlagsort
Bellingham, WA
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505500-003
Förderungen
Copyright
Erfassungsdatum
2010-07-15