PuSH - Publikationsserver des Helmholtz Zentrums München

Target SNP selection in complex disease association studies.

BMC Bioinformatics 5:92 (2004)
Verlagsversion Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: The massive amount of SNP data stored at public internet sites provides unprecedented access to human genetic variation. Selecting target SNP for disease-gene association studies is currently done more or less randomly as decision rules for the selection of functional relevant SNPs are not available. RESULTS: We implemented a computational pipeline that retrieves the genomic sequence of target genes, collects information about sequence variation and selects functional motifs containing SNPs. Motifs being considered are gene promoter, exon-intron structure, AU-rich mRNA elements, transcription factor binding motifs, cryptic and enhancer splice sites together with expression in target tissue. As a case study, 396 genes on chromosome 6p21 in the extended HLA region were selected that contributed nearly 20,000 SNPs. By computer annotation ~2,500 SNPs in functional motifs could be identified. Most of these SNPs are disrupting transcription factor binding sites but only those introducing new sites had a significant depressing effect on SNP allele frequency. Other decision rules concern position within motifs, the validity of SNP database entries, the unique occurrence in the genome and conserved sequence context in other mammalian genomes. CONCLUSION: Only 10% of all gene-based SNPs have sequence-predicted functional relevance making them a primary target for genotyping in association studies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Altmetric
0.200
0.000
42
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter DATABASES; TOOL
Sprache englisch
Veröffentlichungsjahr 2004
HGF-Berichtsjahr 0
ISSN (print) / ISBN 1471-2105
e-ISSN 1471-2105
Zeitschrift BMC Bioinformatics
Quellenangaben Band: 5, Heft: , Seiten: , Artikelnummer: 92 Supplement: ,
Verlag BioMed Central
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Epidemiology (EPI)
PSP-Element(e) FE 73922
PubMed ID 15248903
Scopus ID 13244265571
Erfassungsdatum 2004-12-31