PuSH - Publikationsserver des Helmholtz Zentrums München

Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data.

BMC Syst. Biol. 5:21 (2011)
Verlagsversion Volltext DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
BACKGROUND: With the advent of high-throughput targeted metabolic profiling techniques, the question of how to interpret and analyze the resulting vast amount of data becomes more and more important. In this work we address the reconstruction of metabolic reactions from cross-sectional metabolomics data, that is without the requirement for time-resolved measurements or specific system perturbations. Previous studies in this area mainly focused on Pearson correlation coefficients, which however are generally incapable of distinguishing between direct and indirect metabolic interactions. RESULTS: In our new approach we propose the application of a Gaussian graphical model (GGM), an undirected probabilistic graphical model estimating the conditional dependence between variables. GGMs are based on partial correlation coefficients, that is pairwise Pearson correlation coefficients conditioned against the correlation with all other metabolites. We first demonstrate the general validity of the method and its advantages over regular correlation networks with computer-simulated reaction systems. Then we estimate a GGM on data from a large human population cohort, covering 1020 fasting blood serum samples with 151 quantified metabolites. The GGM is much sparser than the correlation network, shows a modular structure with respect to metabolite classes, and is stable to the choice of samples in the data set. On the example of human fatty acid metabolism, we demonstrate for the first time that high partial correlation coefficients generally correspond to known metabolic reactions. This feature is evaluated both manually by investigating specific pairs of high-scoring metabolites, and then systematically on a literature-curated model of fatty acid synthesis and degradation. Our method detects many known reactions along with possibly novel pathway interactions, representing candidates for further experimental examination. CONCLUSIONS: In summary, we demonstrate strong signatures of intracellular pathways in blood serum data, and provide a valuable tool for the unbiased reconstruction of metabolic reactions from large-scale metabolomics data sets.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.565
0.937
96
198
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Fatty Acids/biosynthesis; Fatty Acids/metabolism; Humans; Metabolic Networks and Pathways; Metabolomics/methods*; Models, Biological*; Normal Distribution
Sprache englisch
Veröffentlichungsjahr 2011
HGF-Berichtsjahr 2011
e-ISSN 1752-0509
Zeitschrift BMC Systems Biology
Quellenangaben Band: 5, Heft: 1, Seiten: , Artikelnummer: 21 Supplement: ,
Verlag BioMed Central
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
30201 - Metabolic Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er) Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e) G-503700-004
G-505600-001
G-503700-001
G-504200-003
PubMed ID 21281499
Scopus ID 79251567361
Erfassungsdatum 2011-02-04